- #1
- 24,775
- 792
I just logged this on the biblio thread. This is in case there are questions, or things people want to discuss.
http://arxiv.org/abs/1401.6562
Planck stars
Carlo Rovelli, Francesca Vidotto
(Submitted on 25 Jan 2014)
A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density --not by size-- the star can be much larger than Planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can then be larger than Planckian by a factor (m/mP)n, where m is the mass fallen into the hole, mP is the Planck mass, and n is positive. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the 10−14cm wavelength.
5 pages, 3 figures.
http://arxiv.org/abs/1401.6562
Planck stars
Carlo Rovelli, Francesca Vidotto
(Submitted on 25 Jan 2014)
A star that collapses gravitationally can reach a further stage of its life, where quantum-gravitational pressure counteracts weight. The duration of this stage is very short in the star proper time, yielding a bounce, but extremely long seen from the outside, because of the huge gravitational time dilation. Since the onset of quantum-gravitational effects is governed by energy density --not by size-- the star can be much larger than Planckian in this phase. The object emerging at the end of the Hawking evaporation of a black hole can then be larger than Planckian by a factor (m/mP)n, where m is the mass fallen into the hole, mP is the Planck mass, and n is positive. The existence of these objects alleviates the black-hole information paradox. More interestingly, these objects could have astrophysical and cosmological interest: they produce a detectable signal, of quantum gravitational origin, around the 10−14cm wavelength.
5 pages, 3 figures.