Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
It has two major branches, differential calculus and integral calculus; the former concerns instantaneous rates of change, and the slopes of curves, while integral calculus concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus, and they make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit.Infinitesimal calculus was developed independently in the late 17th century by Isaac Newton and Gottfried Wilhelm Leibniz. Today, calculus has widespread uses in science, engineering, and economics.In mathematics education, calculus denotes courses of elementary mathematical analysis, which are mainly devoted to the study of functions and limits. The word calculus (plural calculi) is a Latin word, meaning originally "small pebble" (this meaning is kept in medicine – see Calculus (medicine)). Because such pebbles were used for counting (or measuring) a distance travelled by transportation devices in use in ancient Rome, the meaning of the word has evolved and today usually means a method of computation. It is therefore used for naming specific methods of calculation and related theories, such as propositional calculus, Ricci calculus, calculus of variations, lambda calculus, and process calculus.
For those unaware of multifactorial notation, it should be noted that there are some common mistakes made when first being introduced to the notation. For example, ##n! \neq (n!)!## and ##n! \neq (n!)! \neq (n!)! \neq ((n!)!)!##. Just to make sure we're all up to speed, here's a quick run down...
image due to graph, I tried to duplicate this sin wave on desmos but was not able to.
so with sin and cos it just switches to back and forth for the derivatives so thot a this could be done just by observation but doesn't the graph move by the transformations
well anyway?
A particle moves along the x-axis. The velocity of the particle at time t is $6t - t^2$.
What is the total distance traveled by the particle from time $t = 0$ to $t = 3$
ok we are given $v(t)$ so we do not have to derive it from a(t) since the initial $t=0$ we just plug in the $t=3$ into $v(t)$...
I'm reading a book on Classical Mechanics (No Nonsense Classical Mechanics) and one particular section has me a bit puzzled. The author is using the Euler-Lagrange equation to calculate the equation of motion for a system which has the Lagrangian shown in figure 1. The process can be seen in...
ok these always baffle me because f(t) is not known. however if $f'(t)>0$ then that means the slope is aways positive which could be just a line. but could not picture this to work in the tables.
Im sure the answer can be found quickly online but I don't learn by copy and paste. d was...
image due to macros in Overleaf
ok I think (a) could just be done by observation by just adding up obvious areas
but (b) and (c) are a litte ?
sorry had to post this before the lab closes
We are given that ##v' = \frac{1}{10}v^2 - g##.
I tried using implicit differentiation so that ##v'' = \frac{1}{5}vv' = \frac{1}{5}v(\frac{1}{10}v^2-g)## and set this equal to 0. Hence we have 3 critical points, at ##v= 0##, and ##v = \pm \sqrt{10g}##.
Calculating ##v''(0)=-120##, we know the...
image due to macros in overleaf
well apparently all we can do is solve this by observation
which would be the slope as x moves in the positive direction
e appears to be the only interval where the slope is always increasing
Hello, I just have a quick question on deriving the kinetic energy formula using calculus. I understand most of it, I just have a question about one of the steps. here are the steps.
Begin with the Work-Energy Theorem.The work that is done on an object is related to the change in its kinetic...
The graph of $y=e^{\tan x} - 2$ crosses the x-axis at one point in the interval [0,1]. What is the slope of the graph at this point.
A. 0.606
B 2
C 2.242
D 2.961
E 3.747ok i tried to do a simple graph of y= with tikx but after an hour trying failed
doing this in demos it seens the answer is...
9. When I do this problem I know my slope is -3 because f'(2)=-3. I then went and substituted and got
y+5=-3(x-2) which simplified to y=-3x+1
10. I get lost here because the tangent slope would be 0, which would give me the equation y=-2. The normal means perpendicular and the perpendicular...
309 average temperature
$$\begin{array}{|c|c|c|c|c|c|c|}
\hline
t\,(minutes)&0&4&9&15&20\\
\hline
W(t)\,(degrees Farrenheit)&55.0&57.1&61.8&67.9&71.0\\
\hline
\end{array}$$
The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W. where...
ok basically t is 3 hours appart except between 7 and 12 of which I didn't know if we should intemperate.
other wise it is just adding up the 4 $(t)\cdot(R(t))$s.
ok just posted an image due to macros in the overleaf doc
this of course looks like a sin or cos wave and flips back and forth by taking derivatives
looks like a period of 12 and an amplitude of 3 so...
but to start I was not able to duplicate this on desmos
altho I think by observation alone...
Hello, I am having issues finding the dominant terms in the following expression:
lim [(x^7)-9(e^x)] / [sqrt(10x-1)+8*ln(x)]
x->infinity
Prompt: Find the limit and the dominant term in the numerator and denominator.
I have yet to decide on values for the mass of the fixed object, M, the mass of the moving celestial body, m, the initial velocity, v, and the distance between the two objects, r. I will most definitely decide on a larger mass M because I would like the celestial body to spiral in towards the...
As you can see form my previous posts, I am in my first university level calculus class ever. It is going very well, and through the class I am asking good questions and trying to actually make connection with the stuff we arr doing - not just doing the math just for the sake of passing - I am...
ok again I used an image since there are macros and image
I know this is a very common problem in calculus but think most still stumble over it
inserted the graph of v(t) and v'(t) and think for v'(t) when the graph is below the x-axis that participle is moving to the left
the integral has a...
ok I posted a image to avoid any typos but was wondering why the question has dx and options are in dt
I picked C from observation but again that was assuming f was a horizontal line of which it could be something else
that way the limits stay the same but the area is cut in halfopinions...
I just posted a image due to overleaf newcommands and graph
ok (a) if we use f(20) then the $B=0$ so their no weight gain.
(b), (c), was a little baffled and not sure how this graph was derived...
Hi,
I'm a first year physics student who still hasn't found a textbook for his class. Our professor mentioned that any calculus based book is okay, but I can't seem to find anything!
He suggested Halliday and Resnick's Fundamentals of Physics (extended edition), and although it covers the...
The function f is defined by
$$f(x)=\sqrt{25-x^2},\quad -5\le x \le 5$$
(a) Find $f'(x)$ apply chain rule
$$
\dfrac{d}{dx}(25-x^2)^{1/2}
=\dfrac{1}{2}(25-x^2)^{-1/2}2x
=-\frac{x}{\sqrt{25-x^2}}$$
(b) Write an equation for the tangent line to the graph of f at $x=-3$...
I'm just going to post this image now since my tablet won't render the latex. This is a free response question..
But my experience is that the methods of solving are more focused here at mhb saving many error prone steps..
Mahalo ahead...
Ok not sure if I fully understand the steps but presume the first step would be divide both sides deriving$$\dfrac{dy}{dx}=\dfrac{2x-y}{x+2y}$$offhand don't know the correct answer
$\tiny{from College Board}$
I'm looking for recommendations about advanced calculus books. I'm interested in going further and deeper than nth-order linear differential equations, but overall as a Physics student I'm deeply interested in being very, very comfortable dealing with line, surface and volume integration...
As I have said before, I am in calculus class for the first time. I am doing really well in the class, however because of how my mind works, I’m always asking questions to know more, even when it’s too advanced for me. I just like to ponder and think about “what if” I know it’s probably not good...
We have so many great books available for Calculus, such as : Spivak's Calculus, Stewart Calculus, Thomas Calculus , Gilbert Strang's Calculus, Apostol's Calculus etc.
These books are very nice but they teach you the concepts well and all the standard techniques that are available for solving...
Let $g(x)$ be the function given by $g(x) = x^2e^{kx}$ , where k is a constant. For what value of k does g have a critical point at $x=\dfrac{2}{3}$?
$$(A)\quad {-3}
\quad (B)\quad -\dfrac{3}{2}
\quad (C)\quad -\dfrac{3}{2}
\quad (D)\quad {0}
\quad (E)\text{ There is no such k}$$
ok I...
I am new to calculus. I am doing well in my class. I just have a few questions about implicit differentiation. First, why do we call it "implicit" differentiation?
Also, when we do it, why when we differentiate a term with a "y" in it, why do we have to multiply it by a dY/dX? What does that...
A truck crossing the prairies at constant speed of 110km per hour gets 8km per litre of gas. Gas costs 0.68 dollars per litre.
The truck loses 0.10 km per litre in fuel efficiency for each km per hour increase in speed.
Drivers are paid 35 dollars per hour in wages benefits.
Fixed costs for...
I spent a good amount of time thinking about it and in the end I gave up and asked to a friend of mine. He said it's a 1-line-proof: just "integrate by parts" and that's it. I'm not sure you can do that, so instead I tried using the identity:
to express the first term on the right-hand side...
Now, I understand how to use the quotient rule for derivatives and everything. I do not struggle with using it, my question is mostly about the formula itself...I very much enjoy WHY we do things in math, not just “here’s the formula, do it”...Here is the formula for the quotient rule of...
It is possible to find positive integers $A,B, C, D, E$ such that
$\displaystyle\int_0^{\frac{2a}{a^2+1}} sin^{-1}\big(\frac{|1-ax|}{\sqrt{1-x^2}}\big)dx=\frac{A}{\sqrt{a^2+1}}sin^{-1}\big(\frac{1}{a^B}\big ) - C sin^{-1} \big(\frac{1}{a^D}\big) + \frac {Ea\pi}{a^2+1}$ for all real numbers $ a...
I have a paper and on that paper I only can read:
Let $$f:\mathbb{S^{1}} \to \mathbb{R^2}$$ be a function and $$f_{\epsilon}=f+\epsilon hn$$ and $$\mathbb{S^1}$$ is the unit circle.
$$\dot{f_\epsilon}=\dot{f}+\epsilon\dot{h}n+\epsilon h\dot{n}$$
$$\delta\dot{f}=\dot{h}n+h\dot{n}$$
can you...
Summary: Ιntegral calculation : (sin(x))^4 * (cos(x))^6
Hi all,
I tried to solve it, but I got stuck. An advice from my professor is to set: x=arctan(t)
Τhanks.
Homework Statement: The homework problem is included below, but I am looking at the derivatives of vectors.
Homework Equations: I have the properties of derivatives below, but not sure they help me here...
Since $$\lim_{x \rightarrow 0} \frac {R_{n,0,f}(x)} {x^n}=0,$$ ##P_{n,0,g}(x)## contains only terms of degree ##\geq 1## and ##R_{n,0,g}## approaches ##0## as quickly as ##x^n##, I can most likely prove this using ##\epsilon - \delta## arguments, but that seems overly complicated. I also can't...
Honestly I don't know where to begin. I started differentiating alpha trying to show that its absolute value is constant, but the equation got complicated and didn't seem right.