Hi! I've been trying to attempt this problem over here but the solutions state that the solution is this below?
However, from integrating the density and then plugging it into Gauss's law, I get the exact same thing, except a 15 instead of a 5. Could any please help point out if there is an...
It's not a homework. I came up with this problem myself. Trying to understand fundamentals of electronics. Do you know how to solve it? Is voltage somehow related to electron energy levels? What knowledge should I gain to be able to solve problems like that? Thank you!
If we ground the cathode...
In Purcell's E&M Section5.3 "Measurement of charge in motion", he said when a charge is in motion, the force on test charges may not be in the direction of radius vector r. And in next paragraph, he defined Q by averaging over all directions.
However, he just measured the radial component of...
If I have a point charge q right outside of a gaussian surface, it makes sense that the flux is zero inside the surface because the electric field going in equals the electric field going out. However, how would the electric field be zero inside? Wouldn't it just take on the electric field of...
$$\phi_E=\dfrac{Q_{\textrm{enclosed}}}{\varepsilon_0}\Rightarrow Q_{\textrm{enclosed}}=9,6\cdot 10^{-7}\, \textrm{C}$$
$$Q_{\textrm{enclosed}}=\sigma S=\sigma \pi R^2\Rightarrow \sigma =\dfrac{Q_{\textrm{enclosed}}}{\pi (0,1^2)}=3,04\cdot 10^{-5}\, \textrm{C}/\textrm{m}^2$$
I have a lot of...
Hello!
I am trying to solve this exercise of the electric field, but it comes out changed sign and I don't know why.
Statement: On a straight line of length ##L=60\, \textrm{cm}## a charge ##Q=3,0\, \mu \textrm{C}## is uniformly distributed. Calculate the force this linear distribution makes...
Hey, I have a really short question about electrostatics.
The boundary conditions are :
\mathbf{E}^{\perp }_{above} - \mathbf{E}^{\perp}_{below} = -\frac{\sigma}{\varepsilon_{0}}\mathbf{\hat{n}} ,
\mathbf{E}^{\parallel }_{above} = \mathbf{E}^{\parallel}_{below}.
My question is what is...
Disclaimer: This is not a repost.
The problem wants me to calculate the force of a p.c. , that is isolated by itself (this p.c. is the only charge this problem starts with in this problem) inside a capacitor, a distance h/4 from the bottom plate.
This is what I have though of so far but I...
For (a) this problem, the only thing I can see changing is the distribution of the negative charge on the inner wall of the cavity.
When the point charge is in the center of the cavity, you could say the induced charged is spread symmetrically on the inner cavity wall in order to oppose the...
Consider a simple DC circuit containing a 9V battery, a switch, a 10 kΩ resister and a 100 μF capacitor all in series. When the switch is thrown, it will take basically 5 seconds for the capacitor to reach full charge.
Based on what I have read online, the charge on the above capacitor is...
I believe I have all parameters set up correctly to evaluate part A of this problem but I am unsure of the bounds.
I can't integrate from 0 to R because that part of this sheet has a hole there. I need to integrate from R to the other end of the sheet.
Im not sure how I would figure out the...
By measuring angle \theta from the positive ##x## axis counterclockwise as usual, I get ##d\vec{E}=k( (\lambda_2-\lambda_1)\cos(\theta)d\theta, (\lambda_2-\lambda_1)\sin(\theta)d\theta )## and by integrating from ##\theta=0## to ##\theta=\frac{\pi}{2}## I get...
Hi,
I have a dialectric cube and inside the center of the cube I have a part where we have Introduced evenly electrons.
I have to find the polarization charge density in the 3 regions.
I know outside the cube is the vacuum, thus ##\vec{P} = 0## and inside the dialectric (non charged part)...
In this question it is given that the sphere which is conducting is initially given a charge q then due to nonuniform mechanical strength and due to electrostatic force it creates a Small hemispherical bulge on its surface?
okay my doubt is Let me define a term σ where σ is surface density...
I'm a bit confused about what difference there is (if any) between charge and force carriers. I imagine charge as a field around a particle that pushes or attracts other particles. But we're also told that bosons mediate the forces by exchanging. So there seems to be a redundancy unless charge...
The electric field is the one generated by the charge ##+Q## on the inner sphere of the capacitor, which generates a radial electric field ##\vec{E}=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r^2}\hat{r}## which, due to the presence of the dielectric, become...
Gauss' law: $$\iint_{\partial A}\vec E\cdot d\vec A=\frac{Q}{\epsilon_0}$$
Suppose we have a unevenly charged non-conducting spherical shell, in which a Gaussian surface is placed. In this case, is the electrical field on A 0, given that there is no charge inside A? I came up with this example...
In the Reissner–Nordström metric, the charge ##Q## of the central body enters only as its square ##Q^2##. The same is true for the Kerr-Schild form. This would seem to imply that all effects are even functions of ##Q##. For example, the gravitational time dilation is often written as
$$\gamma =...
Hi all,
I was trying to understand an equation where:
axial charge, ##G_A=g^P_A(Z_+-Z_-)+ g^N_A(N_+-N_-)##
What is the meaning of ##Z_+## , ##Z_-##, ##N_+## and ##N_-##? From the article I read, axial charge will be zero when the nuclei has zero spin. What if I have Germanium 73 which has...
Suppose I have a perfect crystal(e.g.TiO2-Rutile, band gap=3ev), under UV light, there should photoconductivity, according to the condensed matter theory, some of these excited conduction band electrons would form small polarons, I am wondering how many percent of the free conduction band...
I am having some problems involving the force that a source moving with speed v along the x-axis would exert on a test charge at the x axis.
Moving to the frame of the source charge, we got that the electric field it exerts is $$E' = kq/x'²$$
Now, moving back to the lab frame, and considering...
I'm new to Astrophysics and I'm just now learning about Antimatter-Matter asymmetry. I understand some of the theories involving how this imbalance couldve occurred, but I'm confused on why the net charge of the universe stayed at zero. It seems to me like if the antimatter particle changed to a...
There are some question involving the statement. One of them is about the charge density in S' frame. It asks to calc it.
I thought that i could calculate the electric field in the referencial frame S' and, then, use the formula
$$ E = \lambda / 2 \pi \epsilon l $$
In that way, i would obtain...
Hi!
Given three voltages as follows;
Q1 = 1C,Q2 = 1C,Q3 = 2C
The distance a is 1m and b = 2m
a) Find the values of the forces that are acting on Q2
I did that like this;
$$ F_{12} = \frac{Q1*Q2}{4\pi\epsilon r^2} $$
$$ F_{32} = \frac{Q1*Q3}{4\pi\epsilon r^2} $$
The results are ...
Picture: Energy source => LR Oscillator => Transformer => Transmission line => Electric dipole antenna => traveling wave
Why would the charge even oscillate in the antenna as opposed to building up in the antenna? The transmission line + antenna is not a closed circuit right?
hi guys
our professor asked us to confirm the units of volume charge density ρ and also the surface charge density σ of a dielectric material given by
$$
\rho = \frac{-1}{4\pi k} \vec{E}\cdot\;grad(k)
$$
$$
\sigma= \frac{-(k-1)}{4\pi} \vec{E_{1}}\cdot\;\vec{n}
$$
I am somehow confused about the...
It is given that the charge density of a particle of charge ##q_0##, world line ##z^{\mu}(\tau)## (and 4-velocity ##u^{\mu}##) in a spin-##s## force field is a ##s##-tensor\begin{align*}
T^{\mu \nu \dots \rho}(x^{\sigma}) = q_0 \int u^{\mu} u^{\nu} \dots u^{\rho} \delta^4[x^{\sigma} -...
Hi everyone.
I am an engineer by trade (don’t hold that against me!) but I was trying an experiment for the latest of my crazy inventions and am missing some key logic in static electricity which I was hoping you could identify.
Equipment
1. Wimshurst machine (like...
A known result is that the average field inside a sphere due to all the charges inside the sphere itself is proportional to the dipole momentum of the charge distribution (see, for example, here).
I wonder whether the same result can be applied in the case of a spherical shell of non-uniform...
I am a little lost on the last step of this problem. I get that we want to know how much time elapses for the capacitor to reach 2/3 of its final charge. That is why 2/3Qf is equal to Qf(1-e^-t/RC).
I don't understand how we make the jump to e^-t/Tau is equal to 1/3? and then somehow e^-t/Tau...
The force on charge ##q_2## will depend on the electric field in medium with dielectric ##K_2##.
Electric field in this second dielectric due to ##q_1## is ##E = \dfrac {kq_1} {K_2r^2}## where r would be the distance from ##q_1##.
So, the electric field at the point where charge ##q_2## is...
I have already calculated the polarisation that is
$$ \mathbf{P} = \frac{\rho_f r}{2} \left( 1 - \frac{\epsilon_0}{\epsilon} \right) \hat{r} . $$
I tried to use the following formulas to calculate the density bound charges. For the surface bound charge I got:
$$ \sigma_{b1} = \mathbf{P} \cdot...
The charge associated with gravitational interactions is the mass. In the Standard Model, charge conjugation is the "flippin" of all kinds of charges (electric, color, etc). So, if we were to, say, incorporate quantum gravity in a beyond the Standard Model theory, what would the full charge...
Somehow this answer is incorrect , but i realize that even numbers are hipothetical , 45 coulumbs is too much charge , what is wrong in my calculations?
Hello! I am susposed to find the force of q3.The problem is given as in the picture ;
Now we are given a hint,and it says the following:
"First calculate the forces of the individual charges on q3. The superposition principle says that you can then simply add these forces vectorially
to get...
This is an offshoot of @Angela G 's thread. I don't want to hijack her thread so I decided to create a new one. Original thread https://www.physicsforums.com/threads/unstable-or-stable-electrostatic-equilibrium.1007881/
@kuruman @PeroK @bob012345 If you have the time I'd appreciate your input...
Hello, I wonder if you could give me some advice to how solve this question. What I was thinking to solve it was to determine J by using Ohms law, ## \vec J = \sigma_{\alpha} \vec E ## I already determined the E field for for the sphere, I got it from a) ("a)" was to determined all the bound...
I tried solving the problem using the force formula, so what I have known is the magnetic field B and E. I also have a motion in the x-axis, that means that the velocity will be pointed at the x-axis. Inserting this in the formula I will be having something like this:
$$\mathbf{F} = q(\mathbf{E}...
Hi all,
I understand the standard solution where charge in an RLC circuit decreases from +Q to 0, for a capacitor with starting charges +Q and -Q. May I know what the terminal charge on a capacitor in an RLC circuit is, when it’s original charges are 2Q and 0?
I am thinking it will be +Q and...
All I can say is that where the charge density on surface is higher, we will have a stronger electric field compared to areas where charge density is lower since more charges means greater electrical force on a test charge placed very close to the surface.
Also, the potential on pointed areas...
This doubt is confusing to me.
I know it's something to do with conductors and insulators, but cannot explain. Conductors have mobile/free electrons unlike insulators. Having free electrons doesn't seem to explain this difference of charge distributions.
Guys I have Problems with this task The arrangement consists of a point charge Q at a distance (x0, y0,0) from the origin and two perfectly conductive surfaces in the (x, z) and (y, z) plane
a) Mathematical description of the space charge density p of the original and mirror charge using the...
Okay, so I tried thinking of this as like a simple balancing of equations. There's an infinite sheet of charge on the left and a conductor on the right with some charge already on it. My thought process was that the side nearer to the charged sheet would have 4.7 more μC/m2 than the far side...