Charge Definition and 1000 Threads

  1. jaumzaum

    I How can we prove that the capacitance does not depend on charge?

    How could we prove mathematically that the capacitance does not depend on charge? I tried to find this proof in the internet but I was not able. Can you guys help me?
  2. A

    B Electrostatic charge build up in environmental electron microscopy

    Hello, If I understand it correctly, the samples are grounded inside a scanning electron microscope (SEM) to avoid charge build up through the electron beam. Also the non-conductive are coated with a conductive layer, so they can be grounded as well. However, I do not know how the charge build...
  3. D

    Potential outside a grounded conductor with point charge inside

    Potential inside is given as in ,https://en.wikipedia.org/wiki/Method_of_image_charges, which is the sum of excitation and induced potential. When the charge is outside it is easy to argue potential is zero in the sphere. But when we have charge inside and image outside, what is potential...
  4. Jrads

    Where Did I Go Wrong in Calculating the Charge's Movement?

    Electric field between the plates V=4x10^3 d=0.02 E=4x10^3/0.02 E=2x10^5 V/m Calculate the force on charge -e -e = -1.602x10^-6 Me = 9.11x10^-31 F=qE F=(1.602x10^-6)(2x10^5) F=0.3204 N Using F=ma a=F/Me a=0.3204/9.11x10^-31 a=3.517x10^29 m/s Time = distance / speed T=.01 (half distance of...
  5. F

    Charge invariance with Heaviside's function

    I followed a demonstration in one of my electromagnetism books, but it is not clear to me. My problem is at the starting point. The book begins by considering the office defined in the following way: $$Q=\int d^4xJ^\alpha(x)\partial_\alpha\theta(\eta_\beta x^\beta)$$ where...
  6. F

    Conservation of charge with Dirac delta

    Hello, I was reviewing a part related to electromagnetism in which the charge and current densities are defined by the Dirac delta: ##\rho(\underline{x}, t)=\sum_n e_n \delta^3(\underline{x} - \underline{x}_n(t))## ##\underline{J}(\underline{x}, t)=\sum_n e_n \delta^3(\underline{x} -...
  7. A

    How to Calculate Heat Generated on R2 After Finding Voltage and Charge?

    I WAS ABLE TO FIND THE voltage in c1 ,c2 which are 4,2.THE CHARGES ARE THE SAME(8). I DONOT KNOW HOW TO CONTINUE.
  8. rkgjet

    Space charge region of p-n junction diode

    does np=ni^2 holds even the space charge region of a pn junction diode?
  9. J

    B Electron charge and spin creating a magnetic field?

    From what I understand, electrons are negatively charged, however, I have recently come to learn that electrons also have a spin which creates a magnetic field around each electron. I don't understand how the electron can be a negative monopole, yet have a completely independent magnetic field...
  10. J

    A Electric charge amplitude mode superconductivity

    Hello, I have a question about the Higgs mode in superconductivity. In this doc, it is said, page 12, that the Higgs mode has no electric charge. But it couples nonlinearly with the photon (in the Ginzburg-Landau theory there is a term A²h with A the vector potential and h the Higgs mode). So...
  11. H

    Force on a charge centered around a rotating magnet

    Charge will experience a rotating magnetic field around it. What will be electric field ( If any ) at the centre, generated by rotation of magnet ?
  12. cwill53

    Capacitor and Surface Charge Density Question

    When I plug in the numbers I get ##2.9513\cdot 10^{-5}C/m^2##, not ##17.6\cdot 10^{-6} C/m^2##. Can someone point out where I'm going wrong?
  13. T

    The back way for deriving Maxwell's Equations: from charge conservation?

    I found one article in 1993 talking about it.[Unacceptable reference deleted by the Mentors]
  14. A

    Writing the charge density in the form of the Dirac delta function

    Hey guys! Sorry if this is a stupid question but I'm having some trouble to express this charge distribution as dirac delta functions. I know that the charge distribution of a circular disc in the ##x-y##-plane with radius ##a## and charge ##q## is given by $$\rho(r,\theta)=qC_a...
  15. S

    Point charge near charged plate

    I thought the equation listed should be used, with the 'charge density' determined by the point charge multiplied by the area of the plate, but not sure if that makes sense.
  16. S

    Charge on two spheres related to Earthing

    Before grounding (left picture), X will be positively charged and Y will be negatively charge. After grounding, I think electrons from Earth will flow to sphere Y and then move to sphere X so X will be neutral and Y will be negatively charged (answer C). But the answer key is D. Why? Thanks
  17. sophiatev

    Electrostatic Potential Energy of a Sphere/Shell of Charge

    So it seems the typical way to approach this problem is to consider the sphere when it has charge q and radius r. With uniform charge density ##\rho##, this becomes ##q = 4/3 \pi r^3 \rho## and so ##dq = 4 \pi r^2 dr \rho##. Using our expression for the potential outside of the sphere, we find...
  18. russ_watters

    Auto/Motor What's Causing My Kia Stinger's Battery to Drain?

    I drive a 2019 Kia Stinger (purchased in June, 2019) with 22,000 miles on it. It's been having weak battery issues for a while, and I've ignored it but I really shouldn't, so now I'm trying to diagnose it to see if I need a new battery, new alternator or if there is a deeper electrical system...
  19. Twigg

    What is the "free charge" in Langmuir oscillations for T>0?

    I did a homework problem in plasma physics recently, and got the right answer (I already submitted the assignment, that's why I didn't put this in the homework subforum), but I had to introduce a new charge density term that doesn't seem to actually exist (but it's zero at T=0). The problem was...
  20. RodolfoM

    Electric potential inside a hollow sphere with non-uniform charge

    I tried to find the charge distribution using the given potential but couldn't produce the correct result. Also, Gauss's Law doesn't help, as the electric flux is 0 but we don't have any symmetry. Can someone please shine a light on this? Thanks in advance..
  21. M

    Some questions about capacitor discharging

    why does the voltage of the capacitor eventually go to 0 when discharging the capacitor? I heard that's because "current starts flowing when discharging", but how exactly does that lead to V going down? I know that I = C * dV/dt, but that doesn't seem to help me understand why V goes down (which...
  22. Mayan Fung

    Electric field acting on the source charge

    I am reading Griffith's textbook on EM. There is a problem asking to find the force acting on the northern hemisphere by the southern hemisphere of a uniformly charged sphere. The solution idea is to find the expression of the E field by Gauss's law and integrate the force over the northern...
  23. R

    I Gluons and Their Charge: Exploring Interacting Bosons with Spin 1

    hello, i am thinking about gluons (Spin = 1) or gluons like particles. We know they harve charges (color,anticolor) for example red,antigreen and so on. My question now is do exist interacting bosons for this charges? Must they have Spin 2?
  24. P

    Potential energy due to an external charge and a grounded sphere

    Let us attempt part C first, which is to find the total energy of the entire system. I can definitely find an expression for the force, as given by Coulomb's Law. However, why should I integrate this force from infinity to d, where d is the distance of the external charge to the centre of the...
  25. AN630078

    Van der Graaf Generator: Charge, Potential and Redesign Questions

    1. i. I think that the potential on the surface will be the same as that of a point charge at the centre of the Van der Graaf sphere, which will be 30cm away (since this is the radius of the top sphere). Convert 30cm to m which is equal to 0.3 m. Therefore, to find the charge it can hold one can...
  26. J

    Exploring Potential Differences between Conductors of the Same Charge

    Hi, I found the following question in a physics book, and so dusted off my 30yr old knowledge on capacitors and tried to answer it. The question is as follows :- "Suppose two nearby conductors carry the same negative charge. Can there be a potential difference between them? If so, can the...
  27. Costweist

    Changes in electric field lines as a result of an oscillating charge

    The last couple of days I’ve been troubled with a specific part of electromagnetism. How will electric field lines be affected by an oscillating charge? More specific, what will happen with the “amplitude” of a wave in an electrical field line as the wave propagate away from the charge? 1. Will...
  28. S

    What do we mean by the charge on a body is denoted by "q"?

    I am sorry if this is a silly question, we know that- Electric Charge is a characteristic property of a Subatomic particle. And, a body is electrically charged by the transfer of electrons. Then, what does it mean by this the charge on a body is denoted by q.What are we talking here. Are we...
  29. A

    Charges, rod and magnetic field

    I have some difficulties in solving this problem. This is what I did. I wrote down the equation of motion for the masses. For the first point \begin{equation} m\ddot{\textbf{r}}_1=\textbf{F}_1=q\dot{\bar{\textbf{r}}}_1\times...
  30. S

    What do we mean when we say that charge is moved or transfered

    Electric Charge is the characteristic property of subatomic particles that causes it to experience a force when placed in an electromagnetic field. So, if electric charge is a characteristic property of subatomic particle then- what do we mean when we say charge is transferred from one body...
  31. S

    Electric Charge is basic property of matter or subatomic particles ?

    In some textbooks it is given that - Electric charge is the characteristic property of matter that causes it to experience a force when placed in an electromagnetic field. and In other textbooks it is given that - Electric Charge is the property of subatomic particles that causes it to...
  32. S

    Understanding Griffith's Velocity Argument for Charge Integration

    In Griffith’s section 10.3.1, when proving why there is an extra factor in integrating over the charge density when it depends on the retarded time, he makes the argument that there can only ever be one point along the trajectory of the particle that “communicates” with the field point. Because...
  33. A

    Electric Field Shielding: Does a Conductor Shield Inside?

    Hi. I was reading about conductors in electrostatic equilibrium and how it makes sense that they have zero electric field inside the material even when an external charge is brought near. The charge density of the material just rearranges itself to cancel. Then I searched for hollow conductors...
  34. JD_PM

    Getting a conserved charge out of the Kerr metric

    Compute the Komar integral for the Kerr metric \begin{equation*} J=-\frac{1}{8 \pi G} \int_{\partial \Sigma} d^2 x \sqrt{\gamma^{(2)}} n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu} \end{equation*} The Kerr metric is given by \begin{align*} (ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2...
  35. E

    Show charge conservation in a curved spacetime

    For the flat spacetime we could just use that partial derivatives commute as well as the antisymmetry of ##F^{ab}##, i.e. ##\partial_b \partial_a F^{ab} = -\partial_b \partial_a F^{ba} = -\partial_a \partial_b F^{ba} = -\partial_b \partial_a F^{ab} \implies \partial_b \partial_a F^{ab} = - 4\pi...
  36. Mohomad

    Spherical charge distribution to generate this E-field

    A spherical volume charge (R<=1cm) with uniform density ρv0 is surrounded by a spherical surface charge ( R=2cm) with charge density 4 C/m2. If the electric field intensity at R=4cm is 5/Є0 ,deterime ρv0
  37. arcTomato

    If the charge oscillates at relativistic velocities

    Hello PF. I'm just curious. I found the following description in a textbook I am reading. What I'm interested in here is what would $E$ and $B$ look like if the charge was oscillating at close to the speed of light ( means relativistic velocities) ? Thank you.
  38. sahilmm15

    A problem regarding static charge -- rubbing a metal rod with wool

    A metal rod held in hand and rubbed with wool will not show any sign of of being charged. However, if a metal rod with a wooden or plastic handle is rubbed without touching its metal part, it shows signs of charging. Why??
  39. PhysicsTest

    Find the electric field from charge density

    There is a section in the BJT explanation the charge density and the corresponding electric field graphs. But i was not sure how the electric field is derived and hence i started deriving it. Please correct me if my understanding is wrong in posting the question It is an ##npn## BJT. My...
  40. sroot

    Help with electrostatics problem (spherical shell charge distribution)

    According to my professor, the solution in this book (pages 20-21) for item (ii) is wrong: https://www.u-cursos.cl/usuario/75468645ed16a71af6da3ffd813d47f5/mi_blog/r/Problems_and_Solutions_on_Electromagnetism.pdf
  41. Kostik

    Location of electrons (not excess charge) in a conductor [static case]

    In a conductor, excess charge resides on the surface. That seems odd, because one would think that the overall energy of the system could be lowered by allowing some of the excess charge to move inward and away from all the charge on the surface, but obviously that can't be true, because charge...
  42. wcjy

    Mass with small charge sliding down a ramp

    When the mass starts sliding down, it will induce a current due to the cutting of B field. By fleming right-hand rule, the B field points into the field, charge going in the direction down the ramp (current pointing down the ramp?), therefore the force should be in the same direction of normal...
  43. C

    How are holes charge carriers?

    Homework Statement:: Hi, It's been a while since I have reviewed my basic semiconductor physics and I have some doubts. In a P-Type doped semidoncutor material, I understand that Group III elements such as Boron are added to a Group IV element such as Silicon and thus the Boron atom has one...
  44. G

    Find the charge distribution from the given E-field (spherical)

    a) Static charge distribution should result in a static electric field? Legitimacy should be checked with curl of E = 0? b) Using the second equation should give is the answer?
  45. AHSAN MUJTABA

    Electrodynamics regarding volume charge density behavior

    In this explanation we need to involve the Dirac delta functions(maybe) but I clearly have a difficulty in understanding it can some one explain me the whole concept of constant or non constant volume charge density.
Back
Top