How could we prove mathematically that the capacitance does not depend on charge? I tried to find this proof in the internet but I was not able. Can you guys help me?
Hello,
If I understand it correctly, the samples are grounded inside a scanning electron microscope (SEM) to avoid charge build up through the electron beam. Also the non-conductive are coated with a conductive layer, so they can be grounded as well.
However, I do not know how the charge build...
Potential inside is given as in ,https://en.wikipedia.org/wiki/Method_of_image_charges, which is the sum of excitation and induced potential. When the charge is outside it is easy to argue potential is zero in the sphere. But when we have charge inside and image outside, what is potential...
Electric field between the plates
V=4x10^3
d=0.02
E=4x10^3/0.02
E=2x10^5 V/m
Calculate the force on charge -e
-e = -1.602x10^-6
Me = 9.11x10^-31
F=qE
F=(1.602x10^-6)(2x10^5)
F=0.3204 N
Using F=ma
a=F/Me
a=0.3204/9.11x10^-31
a=3.517x10^29 m/s
Time = distance / speed
T=.01 (half distance of...
I followed a demonstration in one of my electromagnetism books, but it is not clear to me.
My problem is at the starting point.
The book begins by considering the office defined in the following way:
$$Q=\int d^4xJ^\alpha(x)\partial_\alpha\theta(\eta_\beta x^\beta)$$
where...
Hello, I was reviewing a part related to electromagnetism in which the charge and current densities are defined by the Dirac delta:
##\rho(\underline{x}, t)=\sum_n e_n \delta^3(\underline{x} - \underline{x}_n(t))##
##\underline{J}(\underline{x}, t)=\sum_n e_n \delta^3(\underline{x} -...
From what I understand, electrons are negatively charged, however, I have recently come to learn that electrons also have a spin which creates a magnetic field around each electron. I don't understand how the electron can be a negative monopole, yet have a completely independent magnetic field...
Hello,
I have a question about the Higgs mode in superconductivity. In this doc, it is said, page 12, that the Higgs mode has no electric charge. But it couples nonlinearly with the photon (in the Ginzburg-Landau theory there is a term A²h with A the vector potential and h the Higgs mode). So...
Hey guys! Sorry if this is a stupid question but I'm having some trouble to express this charge distribution as dirac delta functions.
I know that the charge distribution of a circular disc in the ##x-y##-plane with radius ##a## and charge ##q## is given by $$\rho(r,\theta)=qC_a...
I thought the equation listed should be used, with the 'charge density' determined by the point charge multiplied by the area of the plate, but not sure if that makes sense.
Before grounding (left picture), X will be positively charged and Y will be negatively charge.
After grounding, I think electrons from Earth will flow to sphere Y and then move to sphere X so X will be neutral and Y will be negatively charged (answer C). But the answer key is D. Why?
Thanks
So it seems the typical way to approach this problem is to consider the sphere when it has charge q and radius r. With uniform charge density ##\rho##, this becomes ##q = 4/3 \pi r^3 \rho## and so ##dq = 4 \pi r^2 dr \rho##. Using our expression for the potential outside of the sphere, we find...
I drive a 2019 Kia Stinger (purchased in June, 2019) with 22,000 miles on it. It's been having weak battery issues for a while, and I've ignored it but I really shouldn't, so now I'm trying to diagnose it to see if I need a new battery, new alternator or if there is a deeper electrical system...
I did a homework problem in plasma physics recently, and got the right answer (I already submitted the assignment, that's why I didn't put this in the homework subforum), but I had to introduce a new charge density term that doesn't seem to actually exist (but it's zero at T=0). The problem was...
I tried to find the charge distribution using the given potential but couldn't produce the correct result. Also, Gauss's Law doesn't help, as the electric flux is 0 but we don't have any symmetry. Can someone please shine a light on this? Thanks in advance..
why does the voltage of the capacitor eventually go to 0 when discharging the capacitor? I heard that's because "current starts flowing when discharging", but how exactly does that lead to V going down? I know that I = C * dV/dt, but that doesn't seem to help me understand why V goes down (which...
I am reading Griffith's textbook on EM. There is a problem asking to find the force acting on the northern hemisphere by the southern hemisphere of a uniformly charged sphere.
The solution idea is to find the expression of the E field by Gauss's law and integrate the force over the northern...
hello,
i am thinking about gluons (Spin = 1) or gluons like particles.
We know they harve charges (color,anticolor) for example red,antigreen and so on.
My question now is do exist interacting bosons for this charges?
Must they have Spin 2?
Let us attempt part C first, which is to find the total energy of the entire system.
I can definitely find an expression for the force, as given by Coulomb's Law. However, why should I integrate this force from infinity to d, where d is the distance of the external charge to the centre of the...
1. i. I think that the potential on the surface will be the same as that of a point charge at the centre of the Van der Graaf sphere, which will be 30cm away (since this is the radius of the top sphere). Convert 30cm to m which is equal to 0.3 m.
Therefore, to find the charge it can hold one can...
Hi,
I found the following question in a physics book, and so dusted off my 30yr old knowledge on capacitors and tried to answer it. The question is as follows :-
"Suppose two nearby conductors carry the same negative charge. Can there be a potential difference between them? If so, can the...
The last couple of days I’ve been troubled with a specific part of electromagnetism. How will electric field lines be affected by an oscillating charge? More specific, what will happen with the “amplitude” of a wave in an electrical field line as the wave propagate away from the charge?
1. Will...
I am sorry if this is a silly question,
we know that-
Electric Charge is a characteristic property of a Subatomic particle.
And, a body is electrically charged by the transfer of electrons.
Then, what does it mean by this the charge on a body is denoted by q.What are we talking here.
Are we...
I have some difficulties in solving this problem. This is what I did.
I wrote down the equation of motion for the masses. For the first point
\begin{equation}
m\ddot{\textbf{r}}_1=\textbf{F}_1=q\dot{\bar{\textbf{r}}}_1\times...
Electric Charge is the characteristic property of subatomic particles that causes it to experience a force when placed in an electromagnetic field.
So, if electric charge is a characteristic property of subatomic particle then-
what do we mean when we say charge is transferred from one body...
In some textbooks it is given that -
Electric charge is the characteristic property of matter that causes it to experience a force when placed in an electromagnetic field.
and In other textbooks it is given that -
Electric Charge is the property of subatomic particles that causes it to...
In Griffith’s section 10.3.1, when proving why there is an extra factor in integrating over the charge density when it depends on the retarded time, he makes the argument that there can only ever be one point along the trajectory of the particle that “communicates” with the field point. Because...
Hi.
I was reading about conductors in electrostatic equilibrium and how it makes sense that they have zero electric field inside the material even when an external charge is brought near. The charge density of the material just rearranges itself to cancel. Then I searched for hollow conductors...
Compute the Komar integral for the Kerr metric
\begin{equation*}
J=-\frac{1}{8 \pi G} \int_{\partial \Sigma} d^2 x \sqrt{\gamma^{(2)}} n_{\mu} \sigma_{\nu} \nabla^{\mu} R^{\nu}
\end{equation*}
The Kerr metric is given by
\begin{align*}
(ds)^2 &= -\left(1-\frac{2GMr}{\rho^2} \right)(dt)^2...
For the flat spacetime we could just use that partial derivatives commute as well as the antisymmetry of ##F^{ab}##, i.e. ##\partial_b \partial_a F^{ab} = -\partial_b \partial_a F^{ba} = -\partial_a \partial_b F^{ba} = -\partial_b \partial_a F^{ab} \implies \partial_b \partial_a F^{ab} = - 4\pi...
A spherical volume charge (R<=1cm) with uniform density ρv0 is surrounded by a spherical surface charge ( R=2cm) with charge density 4 C/m2. If the electric field intensity at R=4cm is 5/Є0 ,deterime ρv0
Hello PF.
I'm just curious.
I found the following description in a textbook I am reading.
What I'm interested in here is what would $E$ and $B$ look like if the charge was oscillating at close to the speed of light ( means relativistic velocities) ?
Thank you.
A metal rod held in hand and rubbed with wool will not show any sign of of being charged. However, if a metal rod with a wooden or plastic handle is rubbed without touching its metal part, it shows signs of charging. Why??
There is a section in the BJT explanation the charge density and the corresponding electric field graphs. But i was not sure how the electric field is derived and hence i started deriving it. Please correct me if my understanding is wrong in posting the question
It is an ##npn## BJT. My...
According to my professor, the solution in this book (pages 20-21) for item (ii) is wrong: https://www.u-cursos.cl/usuario/75468645ed16a71af6da3ffd813d47f5/mi_blog/r/Problems_and_Solutions_on_Electromagnetism.pdf
In a conductor, excess charge resides on the surface. That seems odd, because one would think that the overall energy of the system could be lowered by allowing some of the excess charge to move inward and away from all the charge on the surface, but obviously that can't be true, because charge...
When the mass starts sliding down, it will induce a current due to the cutting of B field.
By fleming right-hand rule, the B field points into the field, charge going in the direction down the ramp (current pointing down the ramp?),
therefore the force should be in the same direction of normal...
Homework Statement:: Hi,
It's been a while since I have reviewed my basic semiconductor physics and I have some doubts.
In a P-Type doped semidoncutor material, I understand that Group III elements such as Boron are added to a Group IV element such as Silicon and thus the Boron atom has one...
a) Static charge distribution should result in a static electric field? Legitimacy should be checked with curl of E = 0?
b) Using the second equation should give is the answer?
In this explanation we need to involve the Dirac delta functions(maybe) but I clearly have a difficulty in understanding it can some one explain me the whole concept of constant or non constant volume charge density.