I just finished the intro physics sequence at my college, and I wanted to work through the Feyman lecture Vol.1, with the workbook, over the summer. Does anyone know of any sample curriculum used for this book? Or perhaps, knows a good way to work through the book?
I first found ##v_{B}## by ##E_{p,A,B} = mgh_{1} = E_{c, B} = \frac{1}{2}mv_{B}^2 \therefore v_{B} = \sqrt{2gh_{1}} ##
After this I made several failed attempts basically trying to find its final velocity so I could use conservation of energy. Spliting the velocity into its components never...
Why is Kinetic energy a scalar quantity? I read in an article, it said, when the velocity is squared, it is not a vector quantity anymore. Can someone fill in the gaps for me? I can't quite get what that article said. And I would be pleased if you provide some other examples other than kinetic...
Homework Statement
A drop of water fall towards the ground with initial mass [m][/0] and radius [r][/0] (assume the initial shape of that water drop is sphere). the air resistance is F=½.ρ.A.[v][/2].C (C is the drag coefficent, A is the area that the air contact with the water drop and ρ is the...
Homework Statement
Well, there is a physics problem I was solving and it is really interesting how it is officially solved.
We take a small weight and hang it on a steel wire. For how much does the oscillation time change if the temperature of this wire raises for 10K?
I looked up solution...
Homework Statement
This is the problem 8.62(in screenshot) from Morin's textbook of Classical mechanics. I solved it using conservation of momentum in y direction. However in solution manual,he neglects the momentum in y direction by calling stick frictionless. What is this frictionless stick...
Homework Statement
A disc of radius R rolls without slipping along the parabola y= ax2. Obtain the constrain equation
Homework Equations
Because there's no slipping, then:
##R d \theta = ds (1)##
Where ##\theta ## is the angle between the line from the center of the disc to a fixed point...
Homework Statement
Homework EquationsThe Attempt at a Solution
I am pretty sure that I solved part a correctly. However, I feel as though my solutions for parts b and c are not quite correct because they seem simple. For instance, my solution for part b argues that the tangential force is...
A physicist prepares a box and tells us that in the box there is a cat that is in a superposition of being alive and being dead. How can we be sure whether they're telling the truth? Is the state a superposition or a mixture?
If we open the box and measure only whether the cat is alive, using...
The thing is in page p.347 Taylor, it is said that the component is:
g_tan = Omega^2*Rsin(theta)cos(theta) However the angle between the centrifugal Force and the axis normal to the direction of the grav Force is actually 90 - theta, I am not really getting where I am going wrong understanding...
my current skills in math are differential eq and linear algebra...
and I am about to start reading Feynman lectures of physics and planning to read all John Baez's recommended books.. after reading Feynman's, what would be the next best thing to do? learn more math? or jump already to core...
Homework Statement
Acceleration experienced by an astronaut in a rotating space station.
Homework Equations
What force would he experience is his own rotating frame of reference.
The Attempt at a Solution
Newton's second Law for a rotating frame is:
mr'' = F net+ Fcor + Fcf
Fnet (In the...
Hey guys, I reading over Taylor's Classical Mechanics book. Chapter 9, Centrifugal Acceleration Section.
In p.346 he mentions that for a free fall acceleration:
g = g_0 + Ω^2 * Rsinθ ρ
Where its radial component would be...
I am studying Classical Mechanics in this semester, I want to know if there are any suggestions on some problem sets that will help me to master the skills needed.
Homework Statement
CLASSICAL MECHANICS
[/B]Homework Equations
E=U+K[/B]The Attempt at a Solution
Guys, can you please help me with part b) ? I am not sure how to find the velocity. Thanks
Homework Statement
The transverse velocity of the particle in Sections 2.5 and 2.7 is contained in (2.77), since By taking the real and imaginary parts, find expressions for v_x and v_y separately. Based on these expressions describe the time dependence of the transverse velocity.
Homework...
Homework Statement
We solved the differential equation (2.29), , for the velocity of an object falling through air, by inspection---a most respectable way of solving differential equations. Nevertheless, one would sometimes like a more systematic method, and here is one. Rewrite the equation...
In quantum mechanics, there exist some systems where the potential energy of some particle is a Dirac delta function of position: ##V(x) = A\delta (x-x_0 )##, where ##A## is a constant with proper dimensions.
Is there any classical mechanics application of this? It would seem that if I...
Homework Statement
A point mass m hangs at one end of a vertically hung hooke-like spring of force constant k. The other end of the spring is oscillated up and down according to ##z=a\cos(w_1t)##. By treating a as a small quantity, obtain a first-order solution to the motion of m in time...
Homework Statement
A “superball” of mass m bounces back and forth with speed v between two parallel walls, as shown. The walls are initially separated by distance l. Gravity is neglected and the collisions are perfectly elastic.
If one surface is slowly moved toward the other with speed V...
When a ship heels, the centre of buoyancy of the ship moves laterally. It might also move up or down with respect to the water line. The point at which a vertical line through the heeled centre of buoyancy crosses the line through the original, vertical centre of buoyancy is called the...
I have a question that appears elementary, but bizarre in its conclusion:
A mass ##M## is accelerated by a spring of length ##L##, wave-speed ##v_p##, spring-constant ##K## and a constant force ##F## at the other end. As ##K## increases, the extension of the spring ##dx## decreases as does the...
Homework Statement
Suppose the potential in a problem of one degree of freedom is linearly dependent upon time such that
$$H = \frac{p^2}{2m} - mAtx $$ where A is a constant. Solve the dynamical problem by means of Hamilton's principal function under the initial conditions t = 0, x = 0, ##p =...
In Chapter 11: Dynamics of Rigid Bodies, in the Classical Dynamics of Particles and Systems book by Thornton and Marion, Fifth Edition, pages 415-418, Section 11.3 - Inertia Tensor, I have three questions regarding the Inertia Tensor:
1.The authors made the following statement: "neither V nor ω...
I'm reading Scheck's book about Mechanics and it says that Newton's first law is not redundant as it defines what an inertial system is. My problem is that we could say the same about Newton's second law. Indeed, Newton's second law is only valid, in general, for inertial systems, so it also...
Homework Statement
The ammonium ion NH4+ has the shape of a regular tetrahedron. The Nitrogen
atom (blue sphere) is at the center of the tetrahedron and the 4 Hydrogen atoms
are located at the vertices at equal distances L from the center (about 1 Å). Denote
the mass of the hydrogen atoms by Mh...
Homework Statement
A ball of mass 0.075 is traveling horizontally with a speed of 2.20 m/s. It strikes a vertical wall and rebounds horizontally. Due to the collision with the wall, 20% of the ball's initial kinetic energy is dissipated.
Show that the ball rebounds from the wall with a speed of...
1. The problem statement.
A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with horizontal speed v.
Homework Equations
p = mv
The Attempt at a Solution
My answer was m(v-u), meaning the final momentum (mv) subtracted from the...
Homework Statement
This could be a more general question about pendulums but I'll show it on an example.
We have a small body (mass m) hanging from a pendulum of length l.
The point where pendulum is hanged moves like this:
\xi = A\sin\Omega t, where A, \Omega = const. We have to find motion...
[Moderator's note: Post spun off from another thread.]
That is correct but it doesn't mean Eo=0. The rest energy is unlimited in classical mechanics. Therefore it is impossible to find a relation between total energy and momentum.
Hi,
I just started learning physics at university and so I'm looking for help on a simple energy conservation problem. On the bottom right-hand of the image I attached below, you should see that it asks whether the initial speed would increase or decrease if the object was of a greater mass...
Homework Statement
A mass of 3kg is acted upon by three forces of 4.0 N, 6.0N, and 9.0N and is in equilibrium. The 9N force is suddenly removed. Determine the acceleration of the mass.
Homework Equations
F=ma.
The Attempt at a Solution
My main problem with this question is that I cannot think...
Generalized momentum is covariant while velocity is contravariant in coordinate transformation on configuration space, thus they are defined in the tangent bundle and cotangent bundle respectively.
Question: Is that means the momentum is a linear functional of velocity? If so, the way to...
Hey there,
If body 1, mass M1 has escape velocity V_e1 = (2GM1/r)**.5 but M2 is more massive than M1 is this relation still valid? In this case, the subordinate body really isn't the subordinate body so does this still hold? And r (distance b/t the two) changes not only due to the motion of M2...
In Chapter 7: Hamilton's Principle, in the Classical Dynamics of Particles and Systems book by Thornton and Marion, Fifth Edition, page 258-259, we have the following equations:
1. Upon squaring Equation (7.117), why did the authors in the first term of Equation (7.118) are summing over two...
We know that energy is a function of space and velocity and it’s constant (in ideal case) though time.
So ## E(\vec{x}(t) , \vec{\dot{x}}(t)) = E_0##
where ##\vec{x} , \vec{\dot{x}} \in \mathbb{R}^3##.
So my function is ##E : \mathbb{R}^6 \rightarrow \mathbb{R}##.
Then there is my question...
Homework Statement
F=-kx+kx3/α2 where k and α are constants and k > 0. Determine U(x) and discuss the motion. What happens when E=kα2/4?
Homework Equations
F=ma=mv2d/dx
U=-∫Fdx
The Attempt at a Solution
The first part is easy.
U(x) = kx2/2-kx4/4α2
Now I'm looking for what happens when E=kα2/4...
I would really appreciate if someone could advise me whether the system below is a scleronomic or a rheonomic mechanical system, or a mix of both. If we consider the first pendulum, the constraint is fixed which leads to a scleronomous case while the constraint of the second pendulum is not...
Homework Statement
I uploaded the homework question. This is #1.
Homework Equations
None directly given
The Attempt at a Solution
My main difficulty with the problem is that I am convinced it is much easier than my classmates make it out to be. This is graduate mechanics so I'm pretty sure...
<Moderator's note: Moved from a technical forum and thus no template.>
Technically the homework question is at graduate level, but the area I'm having trouble on I feel is at an undergraduate level.
In the question we studied a particle rotating on a vertical hoop that is also rotating about...
In Chapter 8: Central-Force Motion, in the Classical Dynamics of Particles and Systems book by Thornton and Marion, Fifth Edition, page 323, Problem 8-5, we are asked to show that the two particles will collide after a time ##\tau/4√2##.
I don't have any problems with the derivations and with...
Description of the Problem:
Consider a spring-mass system with spring constant ##k## and mass ##m##. Suppose I apply a force ##F_0 \cos(\omega t)## on the mass, but the frequency ##\omega## is very small, so small that it takes the system, say, a million years to reach a maximum and to go to 0...
<<Moderator's note: Moved from a technical forum, no template.>>
Description of the system:
The masses m1 and m2 lie on a smooth surface. The masses are attached with a spring of non stretched length l0 and spring constant k. A constant force F is being applied to m2.
My coordinates:
Left of...
Lagrangian Mechanics uses generalized coordinates and generalized velocities in configuration space.
Hamiltonian Mechanics uses coordinates and corresponding momenta in phase space.
Could anyone please explain the difference between configuration space and phase space.
Thank you in advance for...
Homework Statement
A circular wire hoop rotates with constant angular velocity ! about a vertical diameter. A small bead moves, without friction, along the hoop. Find the equilibrium position of the particle and calculate the frequency of small oscillations about this position.
Homework...