Complex Definition and 1000 Threads

  1. C

    Complex Conjugates in Quadratic Equations: Solving for z

    Homework Statement Solve each equation for z=a+ib z^{*2}=4z where z* is the complex conjugate The Attempt at a Solution I wrote z and z* in terms of x and iy , and tried solving for x and y, but I get quartic terms for y, it doesn't look like it will boil down, It was like over 2 pages of...
  2. K

    Complex Numbers Problem Solution Attempt

    Homework Statement If Z1+Z2+Z3=0 and Z1*Z2 + Z2*Z3 + Z3*Z1=0 and Z1, Z2, Z3 are all complex, what is the value of (|z1|+|z2|+|z3|)/(|z1*z2|+|z2*z3|+|z3*z1|) Homework EquationsThe Attempt at a Solution I tried to multiply the equations by the product of all conjugates and reach some...
  3. Ygggdrasil

    New Findings about the Evolution of Complex Cellular Life

    Humans, other animals, plants, fungi and almost all other forms of complex, multi-cellular life are known as eukaryotes. How eukaryotes evolved from simpler prokaryotic organisms is a major question in evolutionary biology. The current view is that eukaryotes evolved from the fusion between a...
  4. TheChemist_

    Determining graphical set of solutions for complex numbers

    Homework Statement So we have been doing complex numbers for about 2 weeks and there is this one equation I just can't solve. It's about showing the set of solutions in graphical form (on "coordinate" system with the imaginary and the real axis). So here is the equation: Homework Equations...
  5. Rectifier

    Finding anitderivative using complex numbers and Euler

    I have to find a primitive function below using the Euler formulas for ##\sin x## and ## \cos x## The problem $$ \int e^{2x} \sin 3x \ dx $$ Relevant equations ## \cos x = \frac{e^{ix}+e^{-ix}}{2} \\ \sin x = \frac{e^{ix}-e^{-ix}}{2i} \\ \\ \int e^{ix} \ dx = \frac{e^{ix}}{i} ## The attempt...
  6. anemone

    MHB What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

    Evaluate \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}.
  7. Rasalhague

    I Simply-connected, complex, simple Lie groups

    I've been looking at John Baez's lecture notes "Lie Theory Through Examples". In the first chapter, he says Dynkin diagrams classify various types of object, including "simply-connected, complex, simple Lie groups." He discusses the An case in detail. But what are the simply-connected, complex...
  8. Deniz

    Complex Power Homework: Is My Solution Right?

    Homework Statement y = 27 Homework Equations The Attempt at a Solution - I calculated the total impedance. - Divide it with the voltage to get the current. - Then I use the load impedance to find the voltage load. - And I calculated the complex power for the load. I am not comfortable...
  9. J

    Applied Books on complex valued functions and solution of PDE

    Hello folks, 1.- In geometry we study for example the conic sections, their exentricity and properties. I was wondering what part of the mathematical science studies the different properties of complex valued distributions. One example are the spherical armonics. I guess mathematicians have...
  10. Cocoleia

    Solving systems of equations that contain complex numbers

    Homework Statement I am having trouble solving systems of equations when they contain complex numbers. The context is circuit theory and phasors. For example, I am given this And the goal is to find I2 and Voc, which you can see the answers for. I just don't know how to manipulate the numbers...
  11. T

    I Multiplying a vector by a complex number

    I have learned that if I multiply a vector, say 3i + 4j, by a scalar that is a real number, say 2, the effect of the operation is to expand the size of the magnitude of the original vector, by 2 in this case, and the result would be 6i + 8j. What would be the effect on a vector, like 3i + 4j...
  12. T

    I Scalar quantities and complex numbers

    I was taught a scalar is a quantity that consists of a number (positive or negative) and it might include a measuring unit, e.g. 6, 5 kg, -900 J, etc. I was wondering if complex numbers like 3 + 7j (where j is the square root of minus 1) can be considered scalar quantities too, or is it that...
  13. K

    Finding the Center and Radius of a Circle with Complex Numbers and Loci

    Homework Statement Sketch the loci, find centre point and the radius of the circle. args((z-3i)/((z+4))=π/6[/B] Homework Equations args(x/y)=args(x)-args(y) Circle theorem - inclined angle theoremThe Attempt at a Solution I sketched the circle with major arc. Radius= using Pythagorus I got...
  14. MAGNIBORO

    Complex Fourier Series Problem

    Hi, I'm starting to studying Fourier series and I have troubles with one exercises of complex Fourier series with f(t) = t: $$t=\sum_{n=-\infty }^{\infty } \frac{e^{itn}}{2\pi }\int_{-\pi}^{\pi}t\: e^{-itn} dt$$ $$t=\sum_{n=-\infty }^{\infty } \frac{cos(tn)+i\, sin(tn)}{2\pi...
  15. V

    A Relativity in Complex Analysis: Is There a Formulation?

    Is there a formulation of any of the relativity theories in terms of complex analysis? As in - I imagine - every event would be a complex number in a complex field.. or something as such..
  16. arpon

    Complex Integration using residue theorem

    Homework Statement [/B] ##C_\rho## is a semicircle of radius ##\rho## in the upper-half plane. What is $$\lim_{\rho\rightarrow 0} \int_{C_{\rho}} \frac{e^{iaz}-e^{ibz}}{z^2} \,dz$$Homework Equations If ##C## is a closed loop and ##z_1, z_2 ... z_n## are the singular points inside ##C##...
  17. J

    I Can the Complex Integral Problem Be Solved Using Residue Theorem?

    I have this problem with a complex integral and I'm having a lot of difficulty solving it: Show that for R and U both greater than 2a, \exists C > 0, independent of R,U,k and a, such that $$\int_{L_{-R,U}\cup L_{R,U}} \lvert f(z)\rvert\,\lvert dz\rvert \leqslant \frac{C}{kR}.$$ Where a > 0, k...
  18. VrhoZna

    Subfields of complex numbers and the inclusion of rational#s

    Homework Statement Prove that each subfield of the field of complex numbers contains every rational number. ' From Hoffman and Kunze's Linear Algebra Chapter 1 Section 2 Homework EquationsThe Attempt at a Solution Suppose there was a subfield of the complex numbers that did not contain every...
  19. lahanadar

    Period of a complex exponential signal

    I have a simple complex exponential signal of the form x(t)=ejωt. To find period of the signal I tested if x(t)=x(t+nT) for all n: ejωt=ejω(t+nT) ⇒ ejωnT=1=ej2πk where n and k are integers. Then I find a general period expression as T=2πk/ωn Period T means it is the least time a signal...
  20. J

    Studying Differential equations with complex functions?

    Hi folks, When you have a differential equation and the unknown function is complex, like in the Schrodinger equation, What methods should you use to solve it? I mean, there is a theory of complex functions, Laurent series, Cauchy integrals and so on, I guess if it would be possible to...
  21. R

    RC Circuit with a voltage source

    Homework Statement A voltage source E_0 cos ωt is connected in series with a resistor R and a capacitor C. Write down the differential equation expressing Kirchhoff’s law. Then guess an exponential form for the current, and take the real part of your solution to find the actual current...
  22. dykuma

    Convert Partial Fractions & Taylor Series: Solving Complex Equations

    Homework Statement and the solution (just to check my work) Homework Equations None specifically. There seems to be many ways to solve these problems, but the one used in class seemed to be partial fractions and Taylor series. The Attempt at a Solution The first step seems to be expanding...
  23. G

    I Domain of single-valued logarithm of complex number z

    Hello. Let's have any non-zero complex number z = reiθ (r > 0) and natural log ln applies to z. ln(z) = ln(r) + iθ. In fact, there is an infinite number of values of θ satistying z = reiθ such as θ = Θ + 2πn where n is any integer and Θ is the value of θ satisfying z = reiθ in a domain of -π <...
  24. M

    How to interpret a complex Matrix as a Probability Matrix?

    Hello everyone, I'have implemented a Maximum-Likelihood-Expectation-Maximization Algorithm in order to reconstruct a bild. let say, we have such a system Ax=b, where A is a complex matrix, b is a complex vector. A and b are known and we will iterately try to find the best x (which should be...
  25. G

    Investment casting of complex shapes

    Hi guys, I am learning about investment casting at the moment and have a question I would love someone to answer. In investment casting a wax pattern needs to be created. How would that be made for a complex shape like an impeller? I've heard that lots of impellers are created using...
  26. F

    Need help finding roots for a complex number using angles

    so i am starting with the equation x3 = √(3) - i first : change to a vector magnitude = √[ (√(3))2 + 12] = 2 and angle = tan-1( 1/√(3) ) = 30 degrees (in fourth quadrant) so i have a vector of 2 ∠ - 30 so i plot the vector on the graph and consider that : 1. the fundamental theorum of...
  27. T

    Classifying singularities of a complex function

    Homework Statement [/B] Find and classify the isolated singularities of the following: $$ f(z) = \frac {1}{e^z - 1}$$ Homework EquationsThe Attempt at a Solution I have the solution for the positions of the singularities, which is: ## z = 2n\pi i## (for ##n = 0, \pm 1, \pm 2, ...##) and this...
  28. jk22

    I Complex Isomorphism Error in Lorentz Transform

    I felt upon a mistake I made but cannot understand. I consider the following rotation transformation inspired from special relativity : $$\left(\begin{array}{c} x'\\ict'\end{array}\right)=\left (\begin {array} {cc} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end...
  29. binbagsss

    Complex analysis f'/f , f meromorphic, Laurent series

    Homework Statement consider ##f## a meromorphic function with a finite pole at ##z=a## of order ##m##. Thus ##f(z)## has a laurent expansion: ##f(z)=\sum\limits_{n=-m}^{\infty} a_{n} (z-a)^{n} ## I want to show that ##f'(z)'/f(z)= \frac{m}{z-a} + holomorphic function ## And so where a...
  30. F

    Apparent Power vs Complex Power: Understand the Difference

    What is the difference between apparent power and complex power? How to differentiate them?
  31. F

    I Why does time have to be a complex (Minkowski metric)?

    I am studying special relativity, and I found that you have to work with a four dimensional space, where time is a complex variable. If you do so, you end up with the Minkowski metric, were the time component is negative and space components are positive (or vice versa). My questions are, why do...
  32. Leechie

    Evaluating complex integral problem

    Homework Statement I'm having some trouble evaluating the integral $$\int^\infty_{-\infty} \frac{\sqrt{2a}}{\sqrt{\pi}}e^{-2ax^2}e^{-ikx}dx$$ Where a and k are positive constants Homework Equations I've been given the following integral results which may be of help $$\int^\infty_{-\infty}...
  33. whatphysics

    How do you work out simultaneous eqns w/ complex numbers & phasor

    I'm having trouble figuring out to get the answers from the 2 equations. The phasors and complex numbers confuse me. Do I need to change the phasor form? How do I go about doing this thanks! (Not homework question I am trying to figure this for my exam!)
  34. A

    I Integral with complex oscillating phase

    Does there exist and analytical expression for the following integral? I\left(s,m_{1},m_{2},L\right)=\sum_{\boldsymbol{n}\in\mathbb{N}^{3}\backslash\left\{ \boldsymbol{0}\right\}...
  35. ATY

    A Complex conjugation in inner product space?

    I got the following derivation for some physical stuff (the derivation itself is just math) http://thesis.library.caltech.edu/5215/12/12appendixD.pdf I understand everything until D.8. So in the equation ε is a symmetric matrix and δx(t) is just the difference between two points. After D.7...
  36. NihalRi

    Using Kirchoff's laws to find current in complex circuit

    Homework Statement Homework Equations V=IR and kirchhoffs laws The Attempt at a Solution Number three is my attempt at finding a solution but I got stuck when I had to find an expression for loop one on the diagram. Thanks in advance for your help...
  37. J

    Analyzing a Complex Structure for Statics Project

    Hello everyone! I am not actually posting this discussion regarding a homework problem. But I wanted to get some ideas from you all about how to approach the analysis of a structure I am looking at for a Statics Project. The structure is very complex, and my project partner and I are trying...
  38. dykuma

    Integrating Complex Functions in the Complex Plane

    Homework Statement Evaluate the following line integrals in the complex plane by direct integration. Homework Equations Z= x+i y = Cos(θ) +i Sin(θ) = e^i*θ The Attempt at a Solution I'm not sure how to evaluated this by hand. I tried using Z= x+i y = Cos(θ) +i Sin(θ), and evaluating the...
  39. Alvis

    I Complex Analysis Harmonic functions

    Suppose u(x,y) and v(x,y) are harmonic on G and c is an element of R. Prove u(x,y) + cv(x,y) is also harmonic. I tried using the Laplace Equation of Uxx+Uyy=0 I have: du/dx=Ux d^2u/dx^2=Uxx du/dy=Uy d^2u/dy^2=Uyy dv/dx=cVx d^2v/dx^2=cVxx dv/dy=cVy d^2v/dy^2=cVyy I'm not really sure how to...
  40. S

    A Factors in the theory of a complex scalar field

    The theory of a complex scalar field ##\chi## is given by $$\mathcal{L}=\partial_{\mu}\chi^{*}\partial^{\mu}\chi-m_{\chi}^{2}\chi^{*}\chi.$$ Why is it not common to include a factor of ##\frac{1}{2}## in front of the complex ##\chi## kinetic term? What is the effect on the propagator of...
  41. R

    Stuck finding a specific value of an inverse of a complex matrix

    Homework Statement Consider the following matrix. A = 2 + 4i...1 + 5i 2 − 3i...2 + 3i Let B = A-1. Find b12 (i.e., find the entry in row 1, column 2 of A−1) Homework Equations A-1 = 1/(ad - cb)* [ d -b ] [ -c a ] <--imagine as 2x2 matrix with first row (d,-b) and second row...
  42. R

    Stuck on expressing a complex number in the form (a+bi)

    Homework Statement Express the complex number (−3 +4i)3 in the form a + bi Homework Equations z = r(cos(θ) + isin(θ)) The Attempt at a Solution z = -3 + 4i z3 = r3(cos(3θ) + isin(3θ)) r = sqrt ((-3)2 + 42) = 5 θ = arcsin(4/5) = 0.9273 ∴ z3 = 53(cos(3⋅0.9273) + isin(3⋅0.9273)) a = -117 b...
  43. Einstein's Cat

    B Inequalities of complex number

    I am under the impression that the following cannot be stated, a < b, if the a term is a complex number and the b term is either a natural number or a complex number, or any other type of number for that matter. Firstly am I correct? Secondly, if I am, does there exist a theorem of some sort...
  44. P

    B Uses of complex multiplication?

    The only thing which makes complex numbers different from 2-dimensional vectors or any other two-component mathematical object is their multiplication, right? Complex multiplication has uses in rotations but we can easily achieve that using polar co-ordinates. And, their other applications in...
  45. E

    Supplied complex power from source vs consumed by load

    Homework Statement Homework Equations S= 3VaIa* The Attempt at a Solution After transformation: Ia = 120<0 / (6+8j) = 12<-53.13 A Total complex power = 3 * Va * Ia* = 3*120<0 * 12<53.13 = 2592W + j3456 VAR This is the power supplied from source. What would be the power consumed by load?
  46. MickeyBlue

    I Sketching Complex Numbers in the Complex Plane

    I've just had my first batch of lectures on complex numbers (a very new idea to me). Algebraic operations and the idea behind conjugates are straightforward enough, as these seem to boil down to vectors. My problem is sketching. I have trouble defining the real and imaginary parts, and I don't...
  47. E

    Verifying Complex Power Calculations

    Homework Statement Calculate the complex power delivered by the source V = 12cos(wt) V Homework Equations V = IR The Attempt at a Solution 1. I combined 8ohm resistor and 8j ohm inductor in parallel to get 4+4j ohms 2. I combined that with 4ohm resistor in series to get a Zth of 8+4j ohms 3...
  48. V

    Can someone explain this complex math problem?

    I'm working out an impedance matching problem from a textbook (it is not part of any coursework) and I am trying to figure out how they get the 315 term in the polar coordinates below. Z = (XC*RL)/(XC+RL) = (-j333*(1000))/(-j333+1000) = 315 , -71.58* = 100 -j300 ohms I calculated that...
  49. B

    MHB How to Evaluate the Integral of z(z+1)cosh(1/z) Over a Unit Circle?

    Hey everyone, I am trying to evaluate the following integral: \int z(z+1)cosh(1/z) dz with a C of |z| = 1. Can someone please guide me with how to start? I have tried to parametrise the integral in terms of t so that z(t) = e^it however the algebra doesn't seem to work...
  50. T

    I Equivalence of two complex expressions

    I found the above while going through my textbook, where the textbook was trying to explain that the principal value of the product of two complex numbers raised to an exponent is not necessarily equivalent to the product of the two complex number each raised to the same exponent first. Based...
Back
Top