Hi,
I came across some interesting frames recently. Here they are:
I wonder if all these frames can be solved analytically. If yes then how to do it ? Examples a) and d) are planar frames with diagonal members while b) and c) are spatial frames: b is subjected to uniformly distributed load...
I don't know how to start with the factorization.
$$\frac{(-1)^{2/9} + (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}{(-1)^{2/9}- (-3/2 - \frac{i}{2} \sqrt{3})^{(1/3)}}$$
Any hints would be nice. Thank you.
Let z = [a b]^T be in the 2-dimensional vector space over real numbers, and T a linear transformation on the vector space.
Consider
$$\lim_{z'\rightarrow \mathbf{0}} \frac{T(z+z')-T(z)}{z'}$$
I argue this could be an alternative definition for complex derivative.
To illustrate this, z as a...
How do simple Architectural basic computing binary code signaling create a diversity of information and software properties from information signals of existence (=1's) and non-existence (=0's)? After reading some Theoritical and Analytical Science papers recently about the debate on...
Anyone know what the simplest possible self-contained numeral system for complex numbers would be, analogous to signed ternary for integers? My guess would be quarter-imaginary base (https://en.wikipedia.org/wiki/Quater-imaginary_base.)
is this right
Q) Determine this voltage in its simplest complex number form.
v = (2xj6)(3-j8)
2x3=6
2x-j8=-16
j6x3=j18
j6x-j8=-j48
v=6 +(j18-j16) - J(^2)48 (j^2 = -1)
v=6 +j2 +48
V=54 + j2
I've been studying quantum mechanics this semester in school and have ran into an issue I can't find an answer for. I understand why we take the complex conjugate of the wave function, such as when calculating expectation values. I'm a little confused though as to why we take the complex...
a) I think I got this one right. Please let me know otherwise
We have (let's leave the ##x## dependence of the fields implicit :wink:)
$$\mathscr{L} = N \Big(\partial_{\alpha} \phi \partial^{\alpha} \phi^{\dagger} - \mu^2 \phi \phi^{\dagger} \Big) = \partial_{\alpha} \phi^{\dagger}...
I try to understand (almost) complex manifolds and related stuff. Am I right that the condition for almost complexity simply is that the metric locally can be written in terms of the complex coordinates ##z##, i.e. ##g = g(z_1, ... z_m)## (complex conjugate coordinates must not appear)? These...
Solve ##Z^2\bar{Z}=8i##
i am confused on how to proceed
i have tried to substitute ##z=a+ib## solve the conjugate and the square, then separate the real from the imaginary and put all in a system, but becomes too complicated
I was trying to calculate an integral of form:
$$\int_{-\infty}^\infty dx \frac{e^{iax}}{x^2}$$
using contour integration, with ##a>0## above. So I would calculate a contour integral with contour being a semicircle that goes along the real axis, closing it in positive direction in the upper...
Dear Everyone,
I have a question about how to solve for x near the end of the problem:
\[ 1+2\sinh^{2}(z)=0 \]
Here is the solution and work:
\[ 1+2\sinh^2(z)=0 \\ \sinh^2(z)=\frac{-1}{2}\\ \sqrt{\sinh^2(z)}=\pm \sqrt{\frac{-1}{2}}\\ \sinh(z)=\pm i\frac{1}{\sqrt{2}}\\ \]
Then we can split...
I've been trying to continue my education by self-teaching during quarantine (since I can't really go to college right now) with the MIT Opencourseware courses. I landed on one section that's got me stuck for a while which is the second part of this problem (I managed to finish the first part...
$$\int_{-\infty}^{\infty} \frac{e^{-i \alpha x}}{(x-a)^2+b^2}dx=(\pi/b) e^{-i \alpha a}e^{-b |a|}$$
So...this problem is important in wave propagation physics, I'm reading a book about it and it caught me by surprise.
The generalized complex integral would be
$$\int_{C} \frac{e^{-i \alpha...
Summary:: Hello, my question asks if the complex exponential equation 4e^(-j) is equal to 4 ∠-180°. I tried to use polar/rectangular conversions: a+bj=c∠θ with c=(√a^2 +b^2) and θ=tan^(-1)[b/a]
4e^(-j)=4 ∠-180°
c=4, 4=(√a^2 +b^2)
solving for a : a=(√16-b^2)
θ=tan^(-1)[b/a]= -1
b/(√16-b^2)=...
FBD Block 1
FBD Block 2
FBD Pulley B
I'm mainly concerned with the coordinate system direction in this problem, but just to show my attempt, here are the equations I got from the system.
##-T_A + m_1g = m_1a_1##
##T_B - m_2g = m_2a_2##
##T_A - 2T_B = 0##
Using the fact that the lengths...
I have this idea for LED eyes. Basically its an LED screen behind a half spherical shape. I want the user only to see what's on the display if they are looking directly at it. So for that I would need to polarize the half sphere. The half sphere can be made out of anything, the problem is how do...
if ## \gamma (t):= i+3e^{2it } , t \in \left[0,4\pi \right] , then \int_0^{4\pi} \frac {dz} {z} ##
in order to solve such integral i substitute z with ##\gamma(t)## and i multiply by ##\gamma'(t)##
that is:
##\int_0^{4 \pi} \frac {6e^{2it}}{i+3e^{2it}}dt=\left.log(i+3e^{2it}) \right|_0^{4...
Let $z_1=18+83i,\,z_2=18+39i$ and $z_3=78+99i$, where $i=\sqrt{-1}$. Let $z$ be the unique complex number with the properties that
$\dfrac{z_3-z_1}{z_2-z_1}\cdot \dfrac{z-z_2}{z-z_3}$ is a real number and the imaginary part of $z$ is the greatest possible. Find the real part of $z$.
Consider an equation, $$\tilde{x_0}
= \ln(X+ i\delta),$$ where X may be positive or negative and ##0< \delta \ll 1##. Now, if ##X>0## this evaluates to ##\ln(X)## in some limiting prescription for ##\delta \rightarrow 0## while if ##X<0##, we get ##\ln(-X) + i \pi. ##
Now, consider...
Hi PF!
Each element of an ##n\times m## matrix is complex valued. In the following code, I call this "domain". There is also an ##n\times m## matrix that is real valued, below I call this "f". I'd like to plot a 3D image where the ##x-y## plane is the complex plain given by the coordinates...
Hi PF!
Here's an ODE (for now let's not worry about the solutions, as A LOT of preceding work went into reducing the PDEs and BCs to this BVP):
$$\lambda^2\phi-0.1 i\lambda\phi''-\phi'''=0$$ which admits analytic eigenvalues
$$\lambda =-2.47433 + 0.17337 I, 2.47433 + 0.17337 I, -10.5087 +...
How did you find PF?: random Brownian motion
Is randomness real or is it simply defined as such due to our inability to perceive hyper complex order? Randomness is a troublesome word. I'd feel better if I knew it was an objective phenomenon and not merely a placeholder description of...
Hi PF!
I'm trying to find a 1D, linear, complex, 2nd order, eigenvalue BVP: know any that admit analytic solutions? Can't think of any off the top of my head.
Thanks!
I stumbled upon the following problem on instagram:
$$L = \left (\frac{-1+i\sqrt{3}}{2}\right )^6+\left (\frac{-1-i\sqrt{3}}{2}\right )^6+\left (\frac{-1+i\sqrt{3}}{2}\right )^5+\left (\frac{-1-i\sqrt{3}}{2}\right )^5$$
The idea is to compute it. Using a calculator, it is supposed to equal 1. My...
Hi to all member of the Physics Forums. I have this question: it is possible consider the analogue of the Schrodinger equation on the plane with configuration space ##(x,p)\in\mathbb{R}^4## on the complex disk ##\mathbb{D}=\{z\in\mathbb{C}: |z|<1\}##?
Ssnow
Summary:: Inner Product Spaces, Orthogonality.
Hi there,
This my first thread on this forum :)
I encountered the above problem in Schaum’s Outlines of Linear Algebra 6th Ed (2017, McGraw-Hill) Chapter 7 - Inner Product Spaces, Orthogonality.
Using some particular values for u and v, I...
Please critique this text. It came from a research article* I found but I'm only interested if the sentence is 100% accurate or not and not in the specifics of the article itself. Are they suggesting Hilbert space is always infinite? Thanks.
Quantum mechanics is infinitely more complicated than...
I guess I will show my work for substantiating equation 1 and hopefully by doing so someone will be able to point out where I could generalize.
##\langle \vec{S}_{rad} \rangle = \frac{1}{2 \mu} \mathfrak{R} \left( \vec{E}_{rad} \times \vec{B}^*_{rad}\right) = \frac{1}{2 \mu} \mathfrak{R} \left(...
I was expecting Ni2+ to be present also in the answer as it can give dsp2 and sp3 configuration.
[Ni(CN)4]2- and [Ni(NH3)4]2+ have dsp2 and sp3 respectively, right?
The area of two lines that I need to find is 2.36, however i need this in exact form. The lines are y=-x/2e+1/e+e the other line is y=e^x/2
Since y=-x/2e+1/e+e is on top it is the first function.
A=(the lower boundary is 0 and the top is 2) -x/2e+1/e+e-e^x/2
If you could please help!
So far I've got the real part and imaginary part of this complex number. Assume: ##z=\sin (x+iy)##, then
1. Real part: ##\sin x \cosh y##
2. Imaginary part: ##\cos x \sinh y##
If I use the absolute value formula, I got ##|z|=\sqrt{\sin^2 {x}.\cosh^2 {y}+\cos^2 {x}.\sinh^2 {y} }##
How to...
I am following the proof to show that the complex torus is the same as the projective algebraic curve.
First we consider the complex torus minus a point, punctured torus, and show there is a biholomorphic map or holomorphic isomorphism with the affine algebraic curve in ##\mathbb{C}^2##...
Hello! :smile:
I am locked in an exercise.
I must find (and graph) the complex numbers that verify the equation:
##z^2=\bar z^2 ##
If ##z=x+iy## then:
##(x+iy)^2=(x-iy)^2 ##
and operating and simplifying,
##4.x.yi=0 ##
and here I don't know how to continue...
can you help me with ideas?
thanks!
Below are plots of the function ##e^{0.25(x-3)^{-2}} - 0.87 e^{(x-3.5)^{-2}}##
The first plot is for real values. It has a minimum at the red dot. The second plot has in its argument the same real part as the red dot, but has the imaginary part changing from -0.3 to 0.3. It shows the resulting...
I've been trying this problem for a long time. By operating the lower part of the logarithm and clapping the real and imaginary part of the logarithm, I have come to the conclusion that the correct lines must be those in which it is true that:
$ d \ frac {(x ^ 2 + y ^ 2-a ^ 2) ^ 2 + 4y ^ 2a ^...
Hello,
My university offers a couple Complex Analysis courses, among them there is one with the following description:
Introduction to complex variables:
"substantial attention to applications in science and engineering. Concepts, calculations, and the ability to apply principles to physical...
When I type in this:
D [
Re[
Exp[u + 10*I]
],
u
] /. u->0.5
I get this output:
Of course, I could just put the Re outside and the D inside, but it would be nice to know what is wrong with the above. What's with the Re' in the output?
I'm watching this video to which discusses how to find the domain of the self-adjoint operator for momentum on a closed interval.
At moment 46:46 minutes above we consider the constant function 1
$$f:[0,2\pi] \to \mathbb{C}$$
$$f(x)=1$$
The question is that:
How can we show that the...
I am reading Kristopher Tapp's book: Matrix Groups for Undergraduates.
I am currently focused on and studying Section 1 in Chapter2, namely:
"1. Complex Matrices as Real Matrices".I need help in fully understanding how to prove an assertion related to Tapp's Proposition 2.4.
Proposition 2.4...
reducing it to various forms: for example, the one in the title, or 2*pi*k(ln m) = a(ln(n/m)), and so forth. My gut feeling is that it is true (that no such foursome exists), but manipulations have not got me anywhere. Anyone push me in the right direction? I am probably overlooking something...
So just based on the cauchy riemann theorem, I think:
Ux = 2 = Vy = 2xy, so f(z) is differentiable on xy = 1, and also that Vx = y^2 = -Uy = 0. That doesn't make sense to me because if 0 = y^2, then y = 0, yet that wouldn't satisfy xy = 1, would it?
Furthermore, I'm not sure how I would...
I'm looking for material about the following approach : If one suppose a function over complex numbers ##f(x+iy)## then
##\frac{df}{dz}=\frac{\partial f}{\partial x}\frac{1}{\frac{\partial z}{\partial x}}+\frac{\partial f}{\partial y}\frac{1}{\frac{\partial z}{\partial y}}=\frac{\partial...