Conservation of energy Definition and 1000 Threads

In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law, first proposed and tested by Émilie du Châtelet, means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another. For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes. If one adds up all forms of energy that were released in the explosion, such as the kinetic energy and potential energy of the pieces, as well as heat and sound, one will get the exact decrease of chemical energy in the combustion of the dynamite. Classically, conservation of energy was distinct from conservation of mass; however, special relativity showed that mass is related to energy and vice versa by E = mc2, and science now takes the view that mass-energy as a whole is conserved. Theoretically, this implies that any object with mass can itself be converted to pure energy, and vice versa, though this is believed to be possible only under the most extreme of physical conditions, such as likely existed in the universe very shortly after the Big Bang or when black holes emit Hawking radiation.
Conservation of energy can be rigorously proven by Noether's theorem as a consequence of continuous time translation symmetry; that is, from the fact that the laws of physics do not change over time.
A consequence of the law of conservation of energy is that a perpetual motion machine of the first kind cannot exist, that is to say, no system without an external energy supply can deliver an unlimited amount of energy to its surroundings. For systems which do not have time translation symmetry, it may not be possible to define conservation of energy. Examples include curved spacetimes in general relativity or time crystals in condensed matter physics.

View More On Wikipedia.org
  1. Y

    Forces on rotating rod

    I get that the speed is 3.1 m/s, the forces in the rod are 38 N downward and 58 N upward, and that the force on the axis is 49 N.
  2. bucky3052

    A Resistance Force on Gas in Magnetohydrodynamic Generator

    I am attempting to derive equations of state for a flow loop that incorporates a magnetohydrodynamic (MHD) generator to extract energy from the working fluid, an ionized gas. I have been able to find the following equation to define the power output of the generator: (where K is load factor, σ...
  3. Sam Jelly

    Conservation of energy of a bow and arrow

    I thought the initial elastic potential energy would be converted to the arrow's kinetic energy but it also appears that the bow has some velocity.
  4. D

    Angle that makes kinetic and potential energy of simple pendulum equal

    On the first attempt I used conservation of energy to get it down to a single equation involving theta and v (the speed when the angle is theta). But I had no idea how to find v. Now since the maximum speed is given, it is possible to find the maximum angular displacement, ##\alpha##. Then...
  5. TheGreatDeadOne

    Conservation of momentum (center of mass) in projectile launches

    I've already solved this problem using another resource (just get the coordinate of the range of the center of mass and from there, get it for the larger mass ##R_{2}=(3v_{0}^{2})/(4g))##: Range CM: $$R_{(CM)} = \frac{v_{0}^2 sin{2\theta}}{2g}=\frac{v_{0}^{2}}{2}$$ then: $$ R_{(CM)}=...
  6. A

    B What actually is static pressure?

    I’ve been confused about the term static pressure for quite some time. Different sources use very different definitions. From the problems perspective, it’s usually some external pressure. For example we are having a pool with tiny hole on the bottom which makes water level decrease and it flows...
  7. K

    I Conservation of energy in quantum gravity

    is conservation of energy present in our current theories of gravity? more specifically string theory and loop quantum gravity?
  8. K

    I Conservation of energy after measurement

    so I thought that when a system was measured there could be an interaction between the measurement device or environment and the system but overall energy was conserved, but I came across these 2 articles which seem to imply this is not the case...
  9. I

    Elastic potential energy - different methods, different results

    Can someone please tell me where I am wrong? I tried to solve the problem using velocity equation; ##v_{f}^2= v_{i}^{2} + 2as## and got a= 50m/s^2, F= 50 000N and therefore F=kx -> k=50 000N/m because dx=1. But it's not correct. When I do it using conservation of energy I get 100 000N/m. Which...
  10. K

    I Is conservation of energy a local law in Quantum field theory?

    From Wikipedia, I know that it is the case in GR that conservation of energy and other conservation laws are relegated to being local only I thought this wasn't the case in quantum field theory.
  11. K

    I Energy conservation in general relativity

    Is energy conserved in general relativity? I have read most of the posts here that address this. But it isn't clear to me, what most people say is that energy is conserved locally but it can't be defined globally, some people say this means that energy is not conserved in GE while others argue...
  12. H

    How Do Signs Affect Energy Calculation?

    The gravitational potential leads to velocity in downward direction, but spring potential does in upward direction. So should these energies have different signs (plus and minus or vice-versa)?
  13. J

    I Car, gas and total energy calculation

    Hi, What I understood about the principle of conservation of energy: Et = Ep + Ec = constant. For example: Et = 1/2mv^2 + mgh (h = height). Consider a car moving at speed v. For example: Et = 1/2mv^2 + E(gas + exhausts). Indeed, I include the exhausts, otherwise with the drop in the quantity...
  14. BikGer2

    Confused about a conservation of energy problem

    Hi, I assumed I was supposed to find the amount of kinetic energy body 2 receives after contact, assuming the collision is central, body 1 will be at rest after the collision. I started by using the equation for conservation of momentum: \begin{align} m_1v_1 = m_1v_1' + m_2v_2' \\ 50 * 20 =...
  15. Argonaut

    Spring Problem Involving Variables and Constants Only

    Here is my attempt at the solution: a) The apparatus may only experience acceleration ##a > g## while in contact with the spring. Since the spring exerts the greatest force when it is the most compressed, the apparatus will undergo the greatest acceleration at that point. So Newton's second...
  16. MatinSAR

    Spring with mass hangs from the ceiling

    I know that we can answer it using conservation of energy or using N's 2nd law. Using N's 2nd Law: ##F = mv \frac {dv}{dx}## ##Fdx = mvdv## For spring we have : ##F=-kx## ##(mg-kx)dx=mvdv## We'll get same result using above equation. My question: Average spring force from 0 to x is ##-\frac...
  17. P

    Challenging problem about an impact with a smooth frictionless surface

    The system of two material points of identical mass connected by a rigid rod of negligible mass and length ##L## is an example of a conservation of energy problem. The initial energy of the system is the sum of the kinetic energy of the two points and the potential energy of the rod, which is...
  18. F

    Calculating Flywheel Inertia Using Conservation of Energy Equations?

    I am stuck on what to do to calculate the inertia of a flywheel using the method described. I am supposed to use conservation of energy equations to calculate the inertia. I have a picture of the experiment and also the measurements I have taken. It seems each method I try I get a different...
  19. P

    Problem with when to use Force and Energy. What compresses spring/

    This is how I tried to do it, which is the most direct. The force that the mass exerts on the spring is mgsin(53). and I equated that to kx. and found x. but apparently, this is wrong and the teacher told me a different method. (ME)1=(ME)2 due to conservation of mechanical energy...
  20. zachary570

    Conservation of Energy with Gravitational Potential Energy

    I was working on this problem but after getting to the answer I questioned the methods that I used for previous problems that I had solved. I understand that the total energy of the system remains constant and that we use the conservation of momentum to relate the two velocities. This gives two...
  21. kmm

    I Stress-energy tensor and energy/momentum conservation clarification

    I've been working through Bernard Schutz's book on GR and have run into some confusion in chapter 4 problem 20 part b. In this chapter, the stress-energy tensor for a general fluid was introduced and was used to derive the general conservation law for energy/momentum, where we found that...
  22. nav888

    Conservation of Energy when lifting a box up off the floor

    So, I cannot for the life of me write a conservation of energy statement, when an object is lifted up by a force. So in my example there is a box on the floor with v = 0, and then a force of magnitude F, where F > mg, acts on the ball, now the net force is F-mg, and hence the work done is (F -...
  23. A

    Do different length ramps violate conservation of energy?

    mgh=(1/2)(m)(v^2) gh=(1/2)v^2 sqrt(2gh)=v Should have the same v, but this is not the case based on the answer and real-life experiments.
  24. milkism

    Conservation of relativistic energy, collision of particles

    Question: With maximum do they mean that the speed of the pions is the same as the proton and an antiproton? Otherwise there will be two unknowns, and if I use both relativistic-energy and momentum conservation equations I get difficult equations.
  25. M

    Discovering Vector Direction in Conservation of Energy Problems

    For this problem, Is the length vector into or out of the page and how do you tell? EDIT: Why must we use conservation of energy for this problem? I tried solving it like this: ##IdB\sin90 = ma ## ##IdB = ma ## ##v_f = (2aL)^{1/2} ## ##v_f = (\frac {2dIBL} {m})^{1/2} ## Which is incorrect...
  26. Superposed_Cat

    I Conservation of Energy in GR: A-B System Analysis

    Assume you have a two particle system, A, which has a mass and gravitational pull of g, and B, an object with low mass, The system starts at time 0 with the distance between A and B being 0, A being at rest and B having enough kinetic energy to move it a distance r away from A, until time t all...
  27. L

    Two charged spheres hitting each other

    Since the forces involved (gravity and electric force) are conservative we can use conservation of energy. The initial energy is ##E_i= k\frac{q_1q_2}{r_0}-G\frac{m^2}{r_0} ## and the final ##E_f=mv^2+k\frac{q_1q_2}{2r}-G\frac{m^2}{2r} ## so from ##E_i=E_f ## we get...
  28. A

    The Work of Friction: Explained in .32m

    The answer is .32m. I set the elastic potential energy as equal to the work, but at first I put the force in the work equation as (F elastic - F kinetic friction) times distance and rearranged. 1/2kx^2 = (kx-Ff) d (0.5) (22) (0.035)^2 = (22 x 0.035-0.042) d 0.013475= 0.728 d 0.013475/0.728 = d...
  29. S

    I Conservation of energy in quasar outflows?

    I found this article* about the behavior of quasar outflows in cosmology and how they can create a magnetic field. In section 2.1.4., the authors say that when a quasar produces a "wave" or an outflow, the material will be emitted with energy coming from both the quasar itself and the Hubble...
  30. D

    A dial can spin on a fixed rotational axis

    What I have done is on my Ipad that I cant upload or at least don't know how to... :/ With hope of help DJ
  31. C

    Conservation of Energy with Mass on Hemisphere

    I tried approaching this question like this: F_N - mgcos(theta) = -mR(theta_dot)^2 and theta_dot = v/R since R is constant F_N = m(gcos(theta) - (v - v_0)^2/R) (with v being final velocity and v_0 being the initial velocity from the impulse) and then using energy conservation: at t = 0: E =...
  32. H

    How is converted the energy of a E.M. wave in a conductor

    I'm thinking about how the energy is conserved when a E.M. wave pass through a conductor. If a E.M. pass through a conductor, the electrons must move "oscillated", thus the energy from the E.M. wave is converted to kinematic energy. Another way I see that is the E.M wave must generate a current...
  33. C

    Why doesn't this solution work? (Springs and Conservation of Energy)

    I already know the solution to this, all you do is set the height of the top of the trampoline to 0 and solve for initial velocity so the equation for the conservation of energy $$mgh_0 + \frac{1}{2}mv_0^2 + \frac{1}{2}kx_0^2 = mgh_1 + \frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2$$ becomes...
  34. S

    Apparent weight problem (kinematics + conservation of Energy + Newton's laws)

    Hello there, I have tried the problem but don't get a different of 6g's as I am supposed to. I am not sure whether I interpreted the problem in the correct way, but I would love some feedback/hints on what went wrong in my solution, thanks in advance. Solution: SITUATION DRAWINGS + FBDS so...
  35. S

    Conservation of energy problem with friction included

    so I haven't looked at the solution yet, but I know that a 100% the velocity needs to be bigger, but analytically, I get a - sign instead of a + sign as you'll see at the final square root. So for the first 15meters of the motion all you should know is that ##v_1 = 10.458 m/s##. for the 2nd...
  36. A

    B Conservation of momentum and conservation of energy details

    If we have a ball with mass m dropped from a height h down to the ground, how come we can't set the conservation of energy equation just as the velocity of the ball turns 0. mgh = 0 If instead the ball were moving with an initial velocity v, would the equation be ##mgh + \frac{1}{2}mv^2 = 0##...
  37. M

    Conservation of Energy in Trampoline Bounce

    I was able to calculate the correct answer (given by a solution sheet), V=5.364 m/s, using the momentum impulse equation, P0+J=Pf. If this value is correct, however, I don't understand how energy is being conserved. The speed increases after the person bounces off the trampoline while the mass...
  38. C

    A rocket on a spring, related to potential/kinetic energy

    Part A) So from a force diagram we can see that the only two forces acting in our system are the spring force(positive y axis) and the weight of the rocket(negative y axis), which means the spring force is equal and opposite to the weight force. The weight is simple enough ##12* 9.8=117.6N##...
  39. J

    B Conservation of Energy and Momentum in an Explosion

    Hey, I have a question about explosions and how kinetic energy works during them. I have outlined my question on the attached image. Please let me know if something is wrong or needs clarifying. Thank you.
  40. T

    Conservation of energy -- Using a spring to launch a ball up an incline

    Ei = 1/2 K (x)^ 2 K = .0152N/m x = .0375 m Ei = 1.06x10^-5 Ef= 1/2mv2 + mgh m = .164kg, v is unknown, h is .0375sin(8.3)=.00541, Ef set equal to Ei 1.06x10^-5=1/2(.164kg)(v^2)+ (.164kg)(9.8)(.00541) v = .3254m/s I have gotten this answer multiple times but it is not correct. I am going...
  41. K

    B "Prove" that LPG burns with a blue flame ....

    The household LPG burns with a blue flame. There's nothing to prove! But what if we attempt to do that? How do we go about it? I started with the assumption that it is a complete combustion of the LPG. A Google search tells me that the calorific value (the amount of heat a substance gives off...
  42. mohamed_a

    I Problem with understanding angular momentum

    I have a problem in understanding angular momentum equation (mrv), especially the part where radius is involved. imagine an elastic collision occurred between sphere of mass (M) attached to a string forming a circle of radius (R) and moving with velocity (V) and another stationary sphere having...
  43. RogerWaters

    B Why doesn't cosmic inflation violate conservation of energy?

    Hi all, I'm not a physics student (although I have a PhD in a different field) and so don't have the math, but I'm trying to interpret a key passage from Krauss' book 'A Universe from Nothing' where he is (trying?) to explain, in 'layman's terms', what Alan Guth termed 'the ultimate free lunch'...
  44. S

    Problem of spring block system: force vs conservation of energy

    I have used the work energy theorem like all source have shown me an have arrived at the right answer where work one by all the forces is the change in kinetic energy -1/2kx^2 - umgcosΘx +mgsinΘx = 0 is the equation which becomes -1/2kx -umgcosΘ+ mgsinΘ = 0 where k= spring constant u=...
  45. J

    I Interference and conservation of energy in a resonator

    It is known that constructive interference in one place must be compensated for by destructive interference in another. Take a simple Fabry Perot resonator for example. The interference occurring at both sides of the first mirror (assuming one incident electric field) compensate each other out...
  46. tiago000000

    Exploring the Law of Conservation of Energy with a 5kg Weight and 10L Bucket

    Hi everyone! I regularly use the forum to learn but never registered to post anything, as I have nothing to teach really… But today I have a question regarding the law of conservation of energy that I can’t find the answer to, and maybe someone will help me understand: (I’ve attached a drawing)...
  47. J

    I Fresnel equations and conservation of energy (phase shifts)

    Quantum mechanically speaking when we split a wave in two the resulting waves must have a 90 degrees phase difference for energy to be conserved. Take the beamsplitter depicted in [1] for example. But the Fresnel equations state that the reflected wave should experience a phase shift of π when...
  48. C

    B E.P.E. -> ? when 2 masses are attached to a spring

    Two masses m and M are attached to a compressed spring. When the spring decompresses, the masses won't be pushed off the spring. What will happen to the masses and the entire system? By conservation of energy, the elastic potential energy of the spring will convert into kinetic energy, but which...
  49. amjad-sh

    I Single-slit diffraction experiment and the conservation of energy

    In a single-slit diffraction experiment, a monochromatic light of wavelength ##\lambda## is passed through one slit of finite width ##D## and a diffraction pattern is observed on screen. For a screen located very far away from the slit, the intensity of light ##I## observed on the screen in...
  50. R

    B Why exactly do Virtual Particles not violate Conservation of energy?

    Recently I've read more about virtual particles and at first I tought that there were only doubts that virtual particles are not interpretable with the help of uncertainty principle. Furthermore it can't be used an an "excuse" for the temporary violation of the conservation of energy. Can...
Back
Top