CONvergence is an annual multi-genre fan convention. This all-volunteer, fan-run convention is primarily for enthusiasts of Science Fiction and Fantasy in all media. Their motto is "where science fiction and reality meet". It is one of the most-attended conventions of its kind in North America, with approximately 6,000 paid members. The 2019 convention was held across four days at the Hyatt Regency Minneapolis in Minneapolis, Minnesota.
Question: For the following functions, does the fixed point iteration for finding the fixed point in $\left [ 0,1 \right ]$ converge for all first points $ p_{0} \in \left [ 0,1 \right ]$?
Justify your answer.
a.$ g(x) = e^{\frac{-x}{2}}$
b.$ g(x) = 3x - 1$
Let me attempt for part a first...
a) First off, I computed the integral
\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}\right) \exp\left(...
The Newton-Raphson algorithm is well-known:
##x_{n+1} = x_n - \frac{f(x_n)}{f'(x_{n})}##
Looking at a few implementations online, I have encountered two methods for convergence:
1) The first method uses the function value of the last estimate itself, ##f(x_n)## or ##f(x_{n+1})##. Since at...
Good day
I'm trying to find the radius of this serie, and here is the solution
I just have problem understanding why 2^(n/2) is little o of 3^(n/3) ?
many thanks in advance
Best regards!
Greeting
I'm trying to study the convergence of this serie
I started studying the absolute convergence
because an≈n^(2/3) we know that Sn will be divergente S=∝ so arcatn (Sn)≤π/2 and the denominator would be a positive number less than π/2, and because an≈n^(2/3) and we know 1/n^(2/3) >...
good day
I want to study the convergence of this serie and want to check my approch
I want to procede by asymptotic comparison
artgln n ≈pi/2
n+n ln^2 n ≈n ln^2 n
and we know that
1/(n ln^2 n ) converge so the initial serie converge
many thanks in advance!
Good day
I want to study the connvergence of this serie
I already have the solution but I want to discuss my approach and get your opinion about it
it s clear that n^2+5n+7>n^2+3n+1 so 0<(n^2+3n+1)/(n^2+5n+7)<1 so we can consider this as a geometric serie that converge?
many thanks in advance
Good day
and here is the solution, I have questions about
I don't understand why when in the taylor expansion of exponential when x goes to infinity x^7 is little o of x ? I could undesrtand if -1<x<1 but not if x tends to infinity?
many thanks in advance!
Good day
here is the exercice
and here is the solution that I understand very well
but I have a confusion I hope someone can explain me
if I take the taylor expansion of sin ((n^2+n+1/(n+1))*pi)≈n^2+n+1/(n+1))*pi≈n*pi which diverge!
I know something is wrong in my logic please help me
many...
Hey! :giggle:
I want to check if the following integrals converge or diverge.
1 . $\displaystyle{\int_0^{+\infty}t^2e^{-t^2}\, dt}$
2. $\displaystyle{\int_e^{+\infty}\frac{1}{t^n\ln t}\, dt, \ n\in \{1,2\}}$
3. $\displaystyle{\int_0^{+\infty}\frac{\sin t}{\sqrt{t}}\, dt}$
4...
Hello,
I am currently reading about the Residue Theorem in complex analysis. As a part of the proof, Mary Boas' text states how the a_n series of the Laurent Series is zero by Cauchy's Theorem, since this part of the Series is analytic. This appears to then be related to convergence of the...
My questions is:
Depending on which metric you choose "east coast" or "west coast", do you have to also mind the sign on the cosmological constant in the Einstein field equations?
R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \pm \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
For example, if you...
Hey! 😊
We have the following iteration from Newton's method \begin{align*}x_{k+1}&=x_k-\frac{f(x_k)}{f'(x_k)}=x_k-\frac{x_k^n-a}{nx_k^{n-1}}=\frac{x_k\cdot nx_k^{n-1}-\left (x_k^n-a\right )}{nx_k^{n-1}}=\frac{ nx_k^{n}-x_k^n+a}{nx_k^{n-1}}\\ & =\frac{ (n-1)x_k^{n}+a}{nx_k^{n-1}}\end{align*}
I...
Hey! 😊
I have calculated an approximation to $\frac{\pi}{2}$ using Newton's method on $f(x)=\cos (x)$ with starting value $1$. After 2 iterations we get $1,5707$.
Which conditions does the starting point has to satisfy so that the convergence of the sequence of the Newton iterations to...
Mary Boas attempts to explain this by pointing out that the situation cannot arise because charges will have to be placed individually, and in an order, and that order would represent the order we sum in. That at any point the unplaced infinite charges would form an infinite divergent series...
Of the various notions of convergence for sequences of functions (e.g. pointwise, uniform, convergence in distribution, etc.) which of them can describe convergence of a sequence of functions that have different domains? For example, let ##F_n(x)## be defined by ##F_n(x) = 1 + h## where ##h...
Hey! 😊
Let $0<\alpha \in \mathbb{R}$ and $(f_n)_n$ be a sequence of functions defined on $[0, +\infty)$ by: \begin{equation*}f_n(x)=n^{\alpha}xe^{-nx}\end{equation*} - Show that $(f_n)$ converges pointwise on $[0,+\infty)$.
For an integer $m>a$ we have that \begin{equation*}0 \leq...
Hey! 😊
I want to check the convergence for the below series.
- $\displaystyle{\sum_{n=1}^{+\infty}\frac{\left (n!\right )^2}{\left (2n+1\right )!}4^n}$
Let $\displaystyle{a_n=\frac{\left (n!\right )^2}{\left (2n+1\right )!}\cdot 4^n}$.
Then we have that \begin{align*}a_{n+1}&=\frac{\left...
I create an algorithm that can solve [K]{u}={F} for atomic structure, but the results are not converge
Do the boundary conditions affect the convergence of the resolution of a system of nonlinear partial equations?
And how to know if the solution is diverged because of the boundary conditions...
In the contex of ##L^2## space, it is usually stated that any square-integrable function can be expanded as a linear combination of Spherical Harmonics:
$$
f(\theta,\varphi)=\sum_{\ell=0}^\infty \sum_{m=-\ell}^\ell f_\ell^m \, Y_\ell^m(\theta,\varphi)\tag 2
$$
where ##Y_\ell^m( \theta , \varphi...
I am reading Tej Bahadur Singh: Elements of Topology, CRC Press, 2013 ... ... and am currently focused on Chapter 4, Section 4.1: Sequences ...
I need some further help in order to fully understand Example 4.1.1 ...Example 4.1.1 reads as follows:
In the above example from Singh we read the...
I am reading Tej Bahadur Singh: Elements of Topology, CRC Press, 2013 ... ... and am currently focused on Chapter 4, Section 4.1: Sequences ...
I need help in order to fully understand Example 4.1.1 ...Example 4.1.1 reads as follows:
In the above example from Singh we read the following:
"...
We transform the series into a power series by a change of variable:
y = √(x2+1)
We have the following after substituting:
∑(2nyn/(3n+n3))
We use the ratio test:
ρn = |(2n+1yn+1/(3n+1+(n+1)3)/(2nyn/(3n+n3)| = |(3n+n3)2y/(3n+1+(n+1)3)|
ρ = |(3∞+∞3)2y/(3∞+1+(∞+1)3)| = |2y|
|2y| < 1
|y| = 1/2...
∑((√(x2+1))n22/(3n+n3))
We use the ratio test:
ρn = |2(3n+n3)√(x2+1)/(3n+1+(n+1)3)|
ρ = |2√(x2+1)|
ρ < 1
|2√(x2+1)| < 1
No "x" satisfies this expression, so I conclude the series doesn't converge for any "x". However the answer in the book says the series converges for |x| < √(5)/2. What am...
∑(x2n/(2nn2))
We use the ratio test:
ρn = |(x2n2/(2(n+1)2)|
ρ = |x2/2|
ρ < 1
|x2| < 2
|x| = √(2)
We investigate the endpoints:
x = 2:
∑(4n/(2nn2) = ∑(2n/n2))
We use the preliminary test:
limn→∞ 2n/n2 = ∞
Since the numerator is greater than the denominator. Therefore, x = 2 shouldn't be...
At the exam i had this power series
but couldn't solve it
##\sum_{k=0}^\infty (-1)^\left(k+1\right) \frac {k} {log(k+1)} (2x-1)^k##
i did apply the ratio test (lets put aside for the moment (2x-1)^k ) to the series ##\sum_{k=0}^\infty \frac {k} {log(k+1)}## in order to see to what this...
##\sum_{k=0}^\infty \frac {2^n+3^n}{4^n+5^n} x^n##
in order to find the radius of convergence i apply the root test, that is
##\lim_{n \rightarrow +\infty} \sqrt [n]\frac {2^n+3^n}{4^n+5^n}##
##\lim_{n \rightarrow +\infty} \left(\frac {2^n+3^n}{4^n+5^n}\right)^\left(\frac 1 n\right)=\lim_{n...
given the following
##\sum_{n=0}^\infty n^2 x^n##
in order to find the radius of convergence i do as follows
##\lim_{n \rightarrow +\infty} \left |\sqrt [n]{n^2}\right|=1##
hence the radius of convergence is R=##\frac 1 1=1##
|x|<1
Now i have to verify how the series behaves at the...
## \sum_{n=1}^\infty (-1)^n \frac {log(n)}{e^n}##
i take the absolute value and consider just
## \frac {log(n)}{e^n}##
i check by computing the limit if the necessary condition for convergence is satisfied
##\lim_{n \rightarrow +\infty} \frac {log(n)}{e^n} =\lim_{n \rightarrow +\infty}...
I need a little help with Baby Rudin material regarding the convergence of a sequence of sets please. I wish to follow up on this thread with a definition of convergence of a sequence of sets from Baby Rudin (Principles of Mathematical Analysis, 3rd ed., Rudin) pgs. 304-305:
(pg. 304)...
Hey! :o
Check the below sequences for convergence and determine the limit if they exist. Justify the answer.
$\displaystyle{f_n:=\left (1-\frac{1}{2n}\right )^{3n+1}}$
$\displaystyle{g_n:=(-1)^n+\frac{\sin n}{n}}$
I have done the following:
$\displaystyle{f_n:=\left...
I had thought it would be failure of structural stability since in structural stability qualitative behavior of the trajectories is unaffected by small perturbations, and here, even tiny deviations using ##h## values resulted in huge effects. However, apparently that's not the case, and I'm not...
Problem:
Let $X_n$ be independent random variables such that $X_1 = 1$, and for $n \geq 2$,
$P(X_n=n)=n^{-2}$ and $P(X_n=1)=P(X_n=0)=\frac{1}{2}(1-n^{-2})$.
Show $(1/\sqrt{n})(\sum_{m=1}^{n}X_n-n/2)$ converges weakly to a normal distribution as $n \rightarrow \infty$.Thoughts:
My professor...
Some functions have straight foward integrals, but they get complicated if you take the inverse of it. 1/f(x) for instance.
The primitive of 1/x is ln(x). In this case it's easy to check that the integral of 1/x or ln(x) from 1 to infinite diverges.
##\int_1^\infty (\ln(x))^n dx##
If n = 0, I...
Find the radius of convergence and interval of convergence
of the series.
$$\sum_{n=1}^{\infty}\dfrac{(-1)^n x^n}{\sqrt[3]{n}}$$
(1)
$$a_n=\dfrac{(-1)^n x^n}{\sqrt[3]{n}}$$
(2)
$$\left|\dfrac{a_{a+1}}{a_n}\right|
=\left|\dfrac{(-1)^{n+1} x^{n+1}}{\sqrt[3]{n+1}}...
I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).
I am focused on Chapter 2: Sequences and Series of Real Numbers ... ...
I need help with the proof of Proposition 2.3.22 ...
Proposition 2.3.12 reads as follows:
Can someone please demonstrate (formally and...
I am reading Houshang H. Sohrab's book: "Basic Real Analysis" (Second Edition).
I am focused on Chapter 2: Sequences and Series of Real Numbers ... ...
I need help with an aspect of the proof of Proposition 2.3.8 ...
Proposition 2.3.8 and its proof read as follows:
In the above proof by...
I think ##\lim_{n\rightarrow \infty} a_n = 0## since by direct substitution the value of limit won't be equal to 2 so by direct substitution we must get indeterminate form.
Then how to check for ##\sum_{n=1}^\infty a_n##? I don't think divergence test, integral test, comparison test, limit...
I'm not too sure how to use the hint here. What I had so far was this: an odd extension of ##f## implies ##f = \sum_{k=1}^\infty b_k \sin(k x)##. Notice for ##m>n## $$ \left|\sum_{k=1}^m b_k\sin(k x) - \sum_{k=1}^n b_k\sin(k x)\right| = \left| \sum_{k=n+1}^m b_k\sin(k x)\right| \leq...
Let:
##\nabla## denote dell operator with respect to field coordinate (origin)
##\nabla'## denote dell operator with respect to source coordinates
The electric field at origin due to an electric dipole distribution in volume ##V## having boundary ##S## is:
\begin{align}
\int_V...
Hi, as you know infinite sum of taylor series may not converge to its original function which means when we increase the degree of series then we may diverge more. Also you know taylor series is widely used for an approximation to vicinity of relevant point for any function. Let's think about a...
What is the definition of consistency?
I have seen a proof that shows a finite difference scheme is consistent, where they basically plug a true solution ##𝑢(𝑡)##
into a finite difference scheme, and they get every term, for example ##𝑢^{𝑖+1}_𝑗## and ##𝑢^𝑖_{𝑗+1}##, using taylors polynomials...
I have been struggling with a problem for a long time. I need to solve the second order partial differential equation
$$\frac{1}{G_{zx}}\frac{\partial ^2\phi (x,y)}{\partial^2 y}+\frac{1}{G_{zy}}\frac{\partial ^2\phi (x,y)}{\partial^2 x}=-2 \theta$$
where ##G_{zy}##, ##G_{zx}##, ##\theta##...
Homework Statement
Test the following series for convergence or divergence.
##\sum_{n = 1}^{\infty} \frac {\sqrt n} {e^\sqrt n}##
Homework Equations
None that I'm aware of.
The Attempt at a Solution
I know I can use the Integral Test for this, but I was hoping for a simpler way.
Homework Statement
Hello. I'm not entirely sure what this question is asking me, so I'll post it and let you know my thoughts, and any input is greatly appreciated.
If the series ##\sum_{n=0}^\infty a_n(x-4)^n## converges at x=6, determine if each of the intervals shown below is a possible...