CONvergence is an annual multi-genre fan convention. This all-volunteer, fan-run convention is primarily for enthusiasts of Science Fiction and Fantasy in all media. Their motto is "where science fiction and reality meet". It is one of the most-attended conventions of its kind in North America, with approximately 6,000 paid members. The 2019 convention was held across four days at the Hyatt Regency Minneapolis in Minneapolis, Minnesota.
Here's what I'm confused about: The harmonic series 1/n is divergent (because you're just infinitely adding numbers) but the series (1/2)^(n+1) is convergent. This doesn't make sense to me because by plugging in larger and larger numbers, you are still adding small numbers infinitely which...
n^2 - 1 / (n^3 + 6n)
If I use the nth divergence test, I plug ∞ in (limit as n -> ∞) for n and since the degree on the bottom is larger I get 0, which means it converges.
However, if I use the limit comparison test and compare it to: n^2/n^3, which = 1/n, which diverges -> n^2 - 1 / (n^3 + 6n)...
Homework Statement
Use any appropriate test to determine the convergence or divergence of the following series:
\sum_{i=0}^{\infty} \frac{2^{i} + 3^{i}}{4^{i}+5^{i}}
Homework EquationsThe Attempt at a Solution
I've run it through mathematica and it told me it's convergent. However, I...
Hello! (Wave)
We have a sequence $(y_n)$ with $y_n \geq 0$.
We assume that the series $\sum_{n=1}^{\infty} \frac{y_n}{1+y_n}$ converges. How can we show that the series $\sum_{n=1}^{\infty} y_n$ converges?
It holds that $y_n \geq \frac{y_n}{1+y_n}$.
If we would have to prove the converse we...
Hello! (Wave)
Let $(y_n)$ be a sequence of numbers such that $|y_{n+1}-y_n| \leq 2^{-n}$ for each $n \in \mathbb{N}$.
Show that the sequence $(y_n)$ converges to a real number.
Doesn't $|y_{n+1}-y_n| \leq 2^{-n}$ for each $n \in \mathbb{N}$ imply that $(y_n)$ is a Cauchy sequence?
So does it...
Homework Statement
##P(z) = 1 - \frac{z}{2} + \frac{z^2}{4} - \frac{z^3}{8} + ... ##
Determine if the series is convergent or divergent if ## |z| = 2 ##, where, ## z## is a complex number.
Homework Equations
##1+r+r^2+r^3+...+r^{N-1}=\frac{1-r^N}{1-r}##
The Attempt at a Solution
Let, ##z = 2...
Homework Statement
[/B]
Use the Bounded Monotonic Sequence Theorem to prove that the sequence:
\{a_{i} \} = \Big\{ i - \sqrt{i^{2}+1} \Big\}
Is convergent.Homework EquationsThe Attempt at a Solution
[/B]
I've shown that it has an upper bound and is monotonic increasing, however it is to...
I think this be Analysis,
I Need some kind of convergence theorem for integrals taken over sequences of sets, know one? Example, a double integral taken over sets such that
x^(2n)+y^(2n)<=1 with some integrand. I'd be interested in when the limit of the integral over the sequence of sets is...
Homework Statement
Do the following series converge or diverge?
## \sum_{n=2}^\infty \frac{1}{\sqrt{n} +(-1)^nn}## and
##\sum_{n=2}^\infty \frac{1}{1+(-1)^n\sqrt{n}}##.
Homework Equations
Leibniz convergence criteria:
If ##\{a_n\}_{k=1}^\infty## is positive, decreasing and ##a_n \to 0##, the...
$ \sum_{n}\frac{1}{n.{n}^{\frac{1}{n}}} $
Now $\frac{1}{n}$ diverges and $\ne 0$ , so by limit comparison test:
$ \lim_{{n}\to{\infty}} \frac{n.{n}^{\frac{1}{n}}}{n} = \lim_{{n}\to{\infty}} {n}^{\frac{1}{n}} = \lim_{{n}\to{\infty}} {n}^0 = 1$ (I think the 2nd last step may be dubious?)...
Hey,
I am working on Calculus III and Analysis, I really need help with this one problem. I am not even sure where to begin with this problem. I have attached my assignment to this thread and the problem I need help with is A. Thank you!
Homework Statement
The interval of convergence of the Taylor series expansion of 1/x^2, knowing that the interval of convergence of the Taylor series of 1/x centered at 1 is (0,2)
Homework Equations
If I is the interval of convergence of the expansion of f(x) , and one substitutes a finite...
Radius of convergence of $\displaystyle \sum_{j=0}^{\infty} \frac{z^{2j}}{2^j}$.
If I let $z^2 = x$ I get a series whose radius of convergence is $2$ (by the ratio test).
How do I get from this that the original series has a radius of convergence equal to $\sqrt{2}$?
Hello! I have a problem with the following exercise, in which i must calculate the ray of a power serie. This is the power serie: \sum_{K=0}^{+\infty}(k+1)z^{k+1}. I decide to use the ratio test, and so i calculate \lim_{k\rightarrow +\infty}\frac{a_{n+1}}{a_{n}} for n going to infinity and i...
Need help. Determine the convergence of the series:
1. sum (Sigma E) from n=1 to infinity of: 1/((2*n+3)*(ln(n+9))^2))
2. sum (Sigma E) from n=1 to infinity of: arccos(1/(n^2+3))
I think the d'alembert is unlikely to help here.
Homework Statement
Find the interval of convergence of the power series ∑(x-2)n / 3n
Homework Equations
ρn = |an+1| / |an|
The Attempt at a Solution
I got that ρn = | (x-2) / 3 |. I set my ρn ≤ 1, since this is when the series would be convergent. Manipulating that expression, I got that the...
Hi hi,
So I worked on this problem and I know I probably made a mistake somewhere towards the end so I was hoping one of you would catch it for me. Thank you!
Pasteboard — Uploaded Image
Pasteboard — Uploaded Image
The Cauchy Ratio test says: If $ \lim_{{n}\to{\infty}}\frac{a_{n+1}}{a_n} < 1 $ then the series converges. OK.
Now I read that for a power series (of functions of x), the same test also provides the interval of convergence, i.e. If the series converges, then $...
The text does it thusly:
imgur link: http://i.imgur.com/Xj2z1Cr.jpg
But, before I got to here, I attempted it in a different way and want to know if it is still valid.
Check that f^{*}f is finite, by checking that it converges.
f^{*}f = a_0^2 + a_1^2 cos^2x + b_1^2sin^2x + a_2^2cos^22x +...
Homework Statement
Given the power serie ##\sum_{n\ge 0} a_n z^n##, with radius of convergence ##R##, if there exists a complex number ##z_0## such that the the serie is semi-convergent at ##z_0##, show that ##R = |z_0|##.
Homework EquationsThe Attempt at a Solution
Firstly, since...
Homework Statement
For which number x does the following series converge:
http://puu.sh/lp50I/3de017ea9f.png
Homework Equations
abs(r) is less than 1 then it is convergent. r is what's inside the brackets to the power of n
The Attempt at a Solution
I did the question by using the stuff in...
Homework Statement
Prove that for every a ∈ ℝ+ the following improper integrals are convergent and measure its value.
∫a∞exp(-at)dt
Edited by mentor: ##\int_a^{\infty} e^{-at} dt##
∫1∞exp(-2at)dt
Edited by mentor: ##\int_1^{\infty} e^{-2at} dt##
The Attempt at a Solution
For the first...
Hello. I have a very simple question that I need answered for my science project. I am doing a project on the effect of the convexity of the lens on the intensity of converged light. (Lux?)
I am using a class set which I haven't been able to get my hands on yet, but we are expected to be...
Homework Statement
A function of a hermitian operator H can be written as f(H)=Σ (H)n with n=0 to n=∞.
When is (1-H)-1 defined?
Homework Equations
(1-x)-1 = Σ(-x)n= 1-x+x2-x3+...
The Attempt at a Solution
(1-H)-1 converges if each element of H converges in this series, that is (1-hi)-1...
Homework Statement
All the necessary data is in the code, I'm just trying to converge NR, I decided to use the equation S = V^2 / Z since I had the admittance matrix and powers (needed voltages)
I think my simple algorithm has a slight issue I can't find.
Homework Equations
Thank you!
The...
Homework Statement
Homework Equations
The Attempt at a Solution
I don't get how they got what's stated in the above picture. Where does 1/2 and n/(n + 1) come from? Can't you just show that an + 1 ≤ an?
Homework Statement
For the following Markov chain, find the rate of convergence to the stationary distribution:
\begin{bmatrix} 0.4 & 0.6 \\ 1 & 0 \end{bmatrix} Homework Equations
none
The Attempt at a Solution
I found the eigenvalues which were \lambda_1=-.6 or \lambda_2=1 . The...
Homework Statement
Consider two random variables X and Y with joint PMF given by:
PXY(k,L) = 1/(2k+l), for k,l = 1,2,3,...
A) Show that X and Y are independent and find the marginal PMFs of X and Y
B) Find P(X2 + Y2 ≤ 10)
Homework Equations
P(A)∩P(B)/P(B) = P(A|B)
P(A|B) = P(A) if independent...
Let ${y}_{n}$ be a arbitrary sequence in X metric space and ${y}_{m+1}$ convergent to ${x}^{*}$ in X...İn this case by using triangle inequality can we say that ${y}_{n}\to {x}^{*}$
Homework Statement
Which of the following series is point-wise convergent, absolutely convergent? Which ones are ##L^2(-\pi,\pi)##-convergent.
A) ##\sum_1^\infty \frac{\cos n \theta}{n+1}##
B) ##\sum_1^\infty \frac{(-1)^n\cos n \theta}{n+1}##
Homework Equations
Abel's test:[/B]
Suppose ##\sum...
Homework Statement
Find an example of a sequence ##\{ f_n \}## in ##L^2(0,\infty)## such that ##f_n\to 0 ## uniformly but ##f_n \nrightarrow 0## in norm.
Homework Equations
As I understand it we have norm convergence if
##||f_n-f|| \to 0## as ##n\to \infty##
and uniform convergence if there...
Homework Statement
1. Consider the sequence $$\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5},\frac{1}{6}, \ldots$$ For which values ##z \in \mathbb{R}## is there a subsequence converging to ##z##?
2. Prove that...
Homework Statement
okay so the equation goes:
∫(x*sin2(x))/(x3-1) over the terminals:
b= ∞ and a = 2
Homework Equations
Various rules applying to the convergence or divergence of integrals such as the p-test, ratio test, squeeze test etc
The Attempt at a Solution
Okay so I have tried...
I am trying to understand a condition for a nonincreasing sequence to converge when summed over its prime indices. The claim is that, given a_n a nonincreasing sequence of positive numbers,
then \sum_{p}a_p converges if and only if \sum_{n=2}^{\infty}\frac{a_n}{\log(n)} converges.
I have tried...
Homework Statement
Let ##\sum^{\infty}_{n=0} a_n(z-a)^n## be a real or complex power series and set ##\alpha =
\limsup\limits_{n\rightarrow\infty} |a_n|^{\frac{1}{n}}##. If ##\alpha = \infty## then the convergence radius ##R=0##, else ##R## is given by ##R = \frac{1}{\alpha}##, where...
Hi everyone,
I am generally familiar with convergent series. However, in one economics paper (Becker&Tomes 1979), I found the following that confuses me:$$\sum_{j=0}^{k} \beta^{j} h^{k-j} = \beta^{k}(k+1)\quad \text{if} \quad\beta =h$$
however,
$$\sum_{j=0}^{k} \beta^{j} j^{k-j} =...
Hello,
I have a typical 1D advection problem where a cold fluid flows over a flat plate. I did an energy balance to include conduction, convection and friction loss and I got the PDE's for the fluid and the solid. I used finite differences to solve the system as T(x, t) for both fluid and...
The hypergeometric function, ##{}_{2}F_1(a,b,c;z)## can be written in terms of a power series in ##z## as follows, $${}_{2}F_1(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \frac{z^n}{n!}\,\,\,\,\,\text{provided}\,\,\,\,|z|<1$$
So we may reexpress any hypergeometric function as a...
Homework Statement
Σ(n=0 to ∞) ((20)(-1)^n(x^(3n))/8^(n+1)
Homework Equations
Ratio test for Power Series: ρ=lim(n->∞) a_(n+1)/a_n
The Attempt at a Solution
I tried the ratio test for Power Series and it went like this:
ρ=lim(n->∞) (|x|^(3n+1)*8^(n+1))/(|x|^(3n)*8^(n+2))
=20|x|/8 lim(n->∞)...
Find the Range of Uniform convergence of $ \zeta\left(x\right) = \sum_{n=1}^{\infty}\frac{1}{{n}^{x}} $
Using the Weierstrass-M test, I get this converges for $ 1 \lt x \lt \infty $
But the book's answer is $ 1 \lt s \le x \lt \infty $? I have scoured the book but can't see why they say it...
Homework Statement
[/B]
Hello, this problem is from a well-known calc text:
Σ(n=1 to ∞) 8/(n(n+2)Homework Equations
[/B]
What I have here is decomposingg the problem into Σ(n=1 to ∞)(8/n -(8/n+2)The Attempt at a Solution
I have the series sum as equaling (8/1-8/3) + (8/2-8/4) + (8/3-8/5) +...
I have three questions regarding Newton's method.
https://en.m.wikipedia.org/wiki/Newton-Raphson#Failure_of_the_method_to_converge_to_the_root
According to this wikipedia article, "if the first derivative is not well behaved in the neighborhood of a particular root, the method may overshoot, and...
I found the interval of convergence for a hypergeometric series as |x| < 1, now I believe that I need to apply 'Gauss's test' to check the end point(s). For $ \left| x \right|=1 $ my $ \left| \frac{{a}_{n}}{{a}_{n+1}} \right| = \left|...