Electric field Definition and 1000 Threads

  1. G

    I Do Electric field lines propagate by themselves away from a charge?

    I'm trying to understand how kink would be formed for only electric field for now. Let me share my pictorial understanding. Here is the Link. Moderator's note: The use of external image servers is not allowed. Please upload all images to PhysicsForums. Note that I'm not looking for...
  2. paulimerci

    Find the magnitude of the electric field at point P

    There are two identical spheres with the same charge that are the vertices of an equilateral triangle. ##+3 \mu C## will exert an outward electric field, which is drawn in the FBD below (see the attached pic), Since the horizontal force components (1x and 2x) are equal and opposite at point P...
  3. PhysicsRock

    Capacitor 1/3 filled with a dielectric

    My attempt would be to calculate the electric fields of the vacuum and dielectric part seperately and then use superpositioning to obtain the full solution. However, I don't see an ##x##-dependency coming along that path. The assignment suggests that there must be one though. Unfortunately, this...
  4. R

    B Exploring the Electric Field of a Moving Charge

    How does an electric field of a moving charge, for example a moving electron, inside a wire looks like? Does it looks like this with distorted circular radial lines?
  5. M

    Electric field amplitude question regarding intensity calculations

    My question is specifically with calculating the intensity. The book solution is I=P/(4*pi*r^2) but would this not give me a weaker electrical amplitude in the final calculation after plugging it in to I=(1/2)*√(ε0/μ0)*(E02) ?
  6. R

    B Seeing both B field lines and E field lines at the same time

    After watching this clip Electric Field Lines Lab I wonder if it is possible to see both electric field lines and magnetic field lines at the same time by swapping the two nails in the video with two bar magnets, as the conductors as we understand bar magnets are metals and metals are good...
  7. L

    Divergence of the Electric field of a point charge

    Hi, unfortunately, I am not sure if I have calculated the task correctly The electric field of a point charge looks like this ##\vec{E}(\vec{r})=\frac{Q}{4 \pi \epsilon_0}\frac{\vec{r}}{|\vec{r}|^3}## I have now simply divided the electric field into its components i.e. #E_x , E-y, E_z#...
  8. N

    I Electric Field Shielding by Conducting Sheets

    Dear Experts, When a thin conducting sheet with no charge on is placed at a certain distance from a point charge, does it shield the electric field caused due to the point charge from reaching the other side of the sheet. As an extension of that idea, when a conducting sheet or slab is placed...
  9. K

    A Two level system in a thermal noise electric field

    Hello! I have a 2 level system with a dipole moment d. I want to simulate numerically the evolution of the system under an external sinusoidal electric field (far off resonant). This is straightforward using SE. However I also have on top of that another electric field, created by a coupling of...
  10. O

    Understanding the energy of a dipole in a uniform electric field

    Griffith's E&M problem 4.7 asks to calculate the energy of a dipole in a uniform electric field and I ended up getting a different answer than the one given. I thought that calculating the energy/work done to construct the dipole is the same as dragging two point charges where one is d apart...
  11. Drakkith

    I Units of q in Electric Field Equation

    Quick and possibly stupid question, but in the equation for calculating the electric field: ##{\mathbf E} = \frac{1}{4πe_0}\frac{q}{r^2} \hat {\mathbf r}## What unit is ##q## in? Coulombs? Although now that I think more on it I suppose it also depends on the units you're using to calculate the...
  12. K

    A Two level system under electric field without RWA

    Hello! I have the following Hamiltonian: $$ \begin{pmatrix} 0 & -\Omega\sin(\omega t) \\ -\Omega\sin(\omega t) & \Delta \end{pmatrix} $$ where ##\Delta## is the energy splitting between the 2 levels, ##\Omega## is the Rabi frequency of the driving field and ##\omega## is the frequency of the...
  13. quarkyphysicsgirl

    Electric field generated by solenoid

    The formula we are given is E=(1/2r)(alpha)R^2(muo)Ioe^-(alpha)t. However, I am struggling to figure out what each of the symbols stands for in the formula...can someone help me out? Like super confused on what alpha is in this case.
  14. H

    Electric field at the center of the equilateral triangle

    I've found the distance from each point to the center, which is equal to r=20x1.732/3 = 11.55 cm. I find out that E2 and E3 due to -4µEyC on x-direction canceled each other. The E2y = E3Y = EY = E2Ycos60 = E2/2 = [(KQ2)/r^2]/2 So the net E-field: E = E1 +E2y+E3Y =kQ1/r^2 + [(KQ2)/r^2]/2 +...
  15. neroE

    Electric Field due to a disk of radius R in the xy-plane

    Hello, This question, which I found in various electricitiy and magnetism books (e.g. Introduction to electrodynamics grif.). There are many variations of this question, I am mainly interested in the following setup of it: -Suppose there is a charged disk of radius R lying in the xy-plane, and...
  16. D

    A (nonconservative) electric field is induced in any region in which...

    TL;DR Summary: A (nonconservative electric field is induced in any region in which) A. there is a changing magnetic flux B. there is a changing magnetic field C. the inductive time constant is large D. the electrical resistance is small E. there is electrical current there can be more than one...
  17. Idontknowhatimdoing

    Electric Field Inside Cylindrical Capacitor

    we know that flux is equal to the area integral of electric field dotted with dA and we can set this equal to charge enclosed divided by epsilon naught. Thus, in this case, the integral simplifies to E * A = (q_enclosed)/(ε_naught) when we choose a cylindrical gaussian surface with radius of r...
  18. F

    Magnitude of the Line Charge Density of a Power Line

    Okay so I am a little confused as to where I made a mistake. I couldn't figure out how to program Latex into this website but I attached a file with the work I did and an explanation of my thought process along the way.
  19. J

    Struggling With Part C of Electric Field Calculation

    I've figured out parts A and B but I'm struggling with Part C. I used the equation V = kQ1/r1 + kQ2/r2 where Q1 = -4.4e-12C ; k = 8.98755e9 r1 = 0.026 m Q2 = 27.4e-12 and r2 = .051-.026 My answer (8.329 V) is wrong but I have no idea why. Please help if you can.
  20. V

    Why is electric field at the center of a charged disk not zero?

    The electric field strength at the center of a uniformly charged disk should be zero according to symmetry of concentric rings about the center, where each ring is contributing to the electric field at the center of the disk. For a thin ring of uniform charge distribution the formula is ##E =...
  21. Pushoam

    Electric field at a point close to the centre of a conducting plate

    Since the electric field due to a conducting plate is twice the electric field due to a plastic plate having same charge density, the electric field at the point P will be twice in case of conducting plate and hence it is 20 volt per metre. Is that correct?
  22. B

    A Energy levels shifts in a time-varying electric field

    Hello! I have 2 levels of the same parity with energies ##E_1 < E_2##, and another level of opposite parity a distance ##E## from the ##E_2##. I also have that ##E_2 - E_1 << E##. I have a laser on resonance (I am trying to scan along the resonance and find it) with the transition from ##E_2##...
  23. N

    Proving SHM for charged spring mass system in electric field

    For part (f) Solution is I don't understand why the bit highlighted in yellow is true. Would anybody be kind enough to help.
  24. M

    Electric field at surface of lead-208 nucleus

    For this problem, The solution is, However why is ## r = (208)^{1/3}(1.20 \times 10^{-15} m)## Many thanks!
  25. M

    Integrating electric field of rod

    For this problem, However, I am trying to solve this problem using an alternative method compared with the solutions. My method is: ##\vec E = k_e \int \frac {dq} {r^2} \, dx ## ##\hat r## ##\vec E = k_e \int \frac {\lambda} {x^2 + d^2} \, dx## ## \hat r## If I let ## \hat r = \frac {-x\hat i...
  26. M

    I Electric field in a rotating frame

    Hello! I have a radially pointing electric field i.e. at a given radius, R, the electric field has the same magnitude and points radially around that circle of radius R. I have a particle moving around that circle of radius R, with uniform velocity (ignore for now how it gets to move like that)...
  27. M

    Electric field due to n charges

    For this problem, The solution is, However, should they be a vertical component of the electric field for the expression circled in red? I do understand that assuming that when the nth charge is added it is placed equal distant for the other charges so that a component of the electric field...
  28. M

    Electric field due to two charges

    The problem and solution is, However, I would like to know why it cannot be solved like this: Thanks for any help!
  29. C

    A How to define ##\nabla \cdot D ## at the interface between dielectrics

    It is believed that Maxwell equations (together with other relations depending on the materials) are sufficient to account for any electromagnetic macroscopic effect. The problem is that, for a Maxwell equation to hold, it must at least be defined. Consider for example the case of two...
  30. noowutah

    Find the electric field of a long line charge at a radial distance

    TL;DR Summary: Find the electric field of a long line charge at a radial distance where the potential is 24V higher than at a radial distance r_1=3m where E=4V/m. Answer: 29.5V/m. Never mind: I retract this question. The integral apparently is supposed to diverge! I apologize for not reading...
  31. M

    Symmetry behind charged spring-mass system in Electric field

    For this problem, If we assume that x = 0 is where the spring connects to the wall, then the rest position of the mass-spring-electric field position is x = EQ/k and the max position is x = 2EQ/k. Is there a reason for the symmetry between the rest position and max position? (The symmetry...
  32. M

    No Limits of Integration for Electric Field Integral?

    For this problem, The solution is, However, why have they not included limits of integration? I think this is because all the small charge elements dq across the ring add up to Q. However, how would you solve this problem with limits of integration? Many thanks!
  33. M

    Finding Area of Ring Segment to Find Electric Field of Disk

    Hi! For this problem, Why is the area of each ring segment dA equal to (2π)(r)(dr)? However, according to google the area of a ring segment (Annulus) is, Many thanks!
  34. M

    Electric Field of a Uniform Ring of Charge

    Hi! For this problem, The solution is, However, why did they not include constants of integration in their working shown in red? Many thanks!
  35. livio

    Estimates of voltage drop with distance in weak electric field

    If I resolve the equation in 0, imposing a voltage value of 5 mV, it gives a non real solution, therefore I cannot resolve it for R=1 because I do not know which voltage value to impose. I am sure this is simpler than I am putting it :) thanks for any advice!
  36. C

    Why Does Positive Charge Exert Elec. Field Beyond Neg. Charge?

    I wonder how it is possible that a positive charge can exert el. field beyond negative charge? Shouldn't they "connect" and therefore positive charge should stop to have el. field beyond neg. charge? I mean, I am obviously wrong about that, but can someone please explain why/how el. field from...
  37. cwill53

    Average Electric Field over a Spherical Surface

    The picture above shows the integral that needs to be evaluated, and the associated picture ## \cos\alpha ## can be obtained via the law of cosines. I'm simply confused as to where the ##\cos\alpha ## comes from in the first place. I just don't see why ##\cos\alpha ## is necessary in this...
  38. N

    Find the Electric field at point p

    Since q3=q4 and they are opposite to each others they cancel out But as soon as I try to find the electric field of one of the charges, I need the radius which is not given. By isolating the electric field for radius E=(kq)/r^2 I now have two unknowns
  39. Povel

    A Exploring the Electric Field of a Moving Charged Spherical Shell

    The electric field inside a charged spherical shell moving inertially is, per Gauss's law, zero. If the spherical shell is accelerated, the field inside is not zero anymore, but it gains a non-null component along the direction of the acceleration, as mentioned, for example, in this paper. The...
  40. Y

    Why Does the Electric Field Component Ex Require a Negative Sign?

    hello i would like to understand to something. here is the drew now for my question: i was able to find Ey and here is my correct answer: when i try to find Ex i didnt understand something, i found the correct answer but i need to put minus before and i want to know why? here is my solution...
  41. H

    I Why is the electric field in y direction in a TE guided wave?

    Hi, I have a fairly simple question, but the answer is probably not as simple. I'm not sure to understand why in a guided wave (TE), the electric field is in the y direction. I know ##E_z = 0##, but why ##E_x = 0, B_y = 0##?
  42. N

    I Questions about a Conductor in an Electric Field

    Dear PF, I have a question regarding a conductor in electric filed. I have formulated my question in attached PDF file ... would please be so kind and advise me please... Thanks you in advance ...
  43. S

    I Brownian motion of charged particles?

    If we have charged particles having Brownian motion, would this motion be associated with (or produce) heat or electricity? Would it produce electromagnetic radiation (and if it would produce it, what type of radiation in the electromagnetic spectrum)? Could there be Brownian motion of charged...
  44. H

    Why Does the Electric Field Sum Instead of Cancel with Opposite Charges?

    If there are two charges positive and negative and their electric field point in the same direction then the total electric field would be their sum of magnitudes. Why don't we consider the sign of the charges? For example, a parallel plate capacitor is inside the region where both the positive...
  45. josephsanders

    I Tangential electric force at a surface

    Suppose you have an infinite plane of charge. If the surface charge density is uniform, would the tangential electric force always be zero, even if it is not a conductor nor static? My thought process for this is that if you look at each point charge and draw the electric field lines, then at...
  46. ermia

    Electric field of a part of a hemisphere

    I tried gauss law. And the fact that if alpha is less than pi/2 we can say that we have two parts with angle alpha and one other part which has a normal field at the center. But non of them helped me answer. The problem's solution says that we can use the fact that our section has longitudinal...
  47. Ahmed1029

    I How do I find the Direction of an induced electric field?

    Faraday's law tell's you about the line intergal of the electric field, but you have to know the direction of the induced electric field first in order to properly apply it. How can I find its direction? Is it in the same direction as the induced current?
Back
Top