Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.
The presence of an electric charge, which can be either positive or negative, produces an electric field. The movement of electric charges is an electric current and produces a magnetic field.
When a charge is placed in a location with a non-zero electric field, a force will act on it. The magnitude of this force is given by Coulomb's law. If the charge moves, the electric field would be doing work on the electric charge. Thus we can speak of electric potential at a certain point in space, which is equal to the work done by an external agent in carrying a unit of positive charge from an arbitrarily chosen reference point to that point without any acceleration and is typically measured in volts.
Electricity is at the heart of many modern technologies, being used for:
Electric power where electric current is used to energise equipment;
Electronics which deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.Electrical phenomena have been studied since antiquity, though progress in theoretical understanding remained slow until the seventeenth and eighteenth centuries. The theory of electromagnetism was developed in the 19th century, and by the end of that century electricity was being put to industrial and residential use by electrical engineers. The rapid expansion in electrical technology at this time transformed industry and society, becoming a driving force for the Second Industrial Revolution. Electricity's extraordinary versatility means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. Electrical power is now the backbone of modern industrial society.
With a capacitor with a dielectric with the battery on,
##E_{total} = E_0 + E_i##
##\frac{Q_t}{dC_t} = \frac{Q_0}{dC_0} + \frac{Q_i}{dC_i}##
thus,
##\frac{Q_t}{C_t} = \frac{Q_0}{C_0} + \frac{Q_i}{C_i}##
since in a battery ##V_t = V_0, V_i = 0##, so either ##Q_i = 0## or ##C_i = infinite##
but...
How can electric vehicle deliver energy to grid?
This is the one of the few block diagrams that I could see in google. Do you have better one or can you explain this one? If I am not wrong. V2G is basically giving excess charge in your EV back to the grid.
Hi everyone!
I'm pretty new in this forum, I found the topics here very relevant to my physics course. And here is my question:
Given the following drawing, two infinite sheets (in y and z axis) of ideal conductive material. their thickness is infinitesimal (dx->0).
The electric field is...
I am confused with the solution. It says ##\vec E = \frac{\sigma}{\epsilon_0}##. Shouldn't E = ##2*\vec E = 2*\frac{\sigma}{\epsilon_0}##? Electric field of the positive plate and electric field of the negative plate.
Electric field is 0 in the center of a spherical conductor. At a point P (black dot), I do not understand how the electric field cancels and becomes 0. Electric field is in blue.
1) Why is the electric field 0 at the bottom of Gaussian surface? Isn't the electric field on both sides of the surface, pointing down and outwards like a plane of charge? see image.
2) Why does a charge distribution with cylindrical symmetry have to be infinitely long?
3) My book says a...
I am confused at this calculation of the electric flux through a trapezoidal surface. The flux in should equal the flux out.
The flux in equals -E*A1 where A1 is the area of the bottom of the trapezoid. The flux out equals E*A2 where A2 is the area of the top of the trapezoid. But the two fluxes...
The solution says that the tension in the string in the negative x direction is balanced by the force of the plate on the ball (red). Why is the repulsive force of the ball on the plate (in blue) not included in this calculation?
Does the electric field vector takes into account the field's radial direction? Usually when we calculate the electric field, we use ##\vec E = \frac{kq}{r^2}\vec j##, which is a straight line vector of a positive charge q's electric field. This electric field points from a positive charge q to...
What I don't understand is how come the electric field of the negative plane isn't pointing towards the positive plane (in blue) and cancelling out the electric field of the positive plane (in red). See image
It's not a homework. I came up with this problem myself. Trying to understand fundamentals of electronics. Do you know how to solve it? Is voltage somehow related to electron energy levels? What knowledge should I gain to be able to solve problems like that? Thank you!
If we ground the cathode...
Hello everybody,
I was visualizing the electric field radiation pattern of an antenna in a 3D EM simulation software (CST), and to see it with my eyes made me realize something I probably heard during my studies but forgot. What is the phenomenon behind what you can see below, which is the...
1)Field Lines is supposed to represent the electric field around a charge ,now we can draw infinite field lines around a charge and sinc Electric flux is No of Field Lines /area ,does it become infinite ,the whole concept of field lines is quite in the Gray Area for me ,I can in theory mark...
We can find the potential energy by finding the potential difference between the two masses. the minimum distance between the two masses is 10 cm. The maximum is 30 cm because they can be 3 string lengths apart as they repulse each other once the string is cut.
So, to get potential difference...
3 cm is inside the cylinder. We can use a gaussian cylinder to enclose the inside of the cylinder up to 3 cm. Because the outer cylinder is infinite there is no flux out of the end caps with the inner cylinder. There is also no charge enclosed in the cylinder. So the electric field 3cm away from...
If I have a point charge q right outside of a gaussian surface, it makes sense that the flux is zero inside the surface because the electric field going in equals the electric field going out. However, how would the electric field be zero inside? Wouldn't it just take on the electric field of...
At point ##P(0,0'03,0'04)## the field caused by the sphere is added to the field caused by the plane.
First, ##E_\sigma##
$$E_\sigma=\dfrac{\sigma}{2\varepsilon_0}=\dfrac{0,2\cdot 10^{-6}}{2\varepsilon_0}=11299,44\, \textrm{V}/\textrm{m}$$
Then, ##E_0##: Because ##r<R##...
In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis##...
I have the calculation of the electric field created by a ring of radius ##R## uniformly charged with a linear density of charge ##\lambda## at any point on the axis perpendicular to its surface (##z## axis), but I have some doubts about it. I'll leave you the calculation done first:
In ##x##...
Draw a Gaussian pill box that starts from 0 (half way between the slab) and extends towards 2 cm.$$A \times \int_{0}^{0.02} \rho dz$$
I'm not sure if I should multiply the integral by A (area) or V (volume)
And if area would I multiply by 0.02^2?
I'm confused here. Thanks for your help.
Hey, I have a really short question about electrostatics.
The boundary conditions are :
\mathbf{E}^{\perp }_{above} - \mathbf{E}^{\perp}_{below} = -\frac{\sigma}{\varepsilon_{0}}\mathbf{\hat{n}} ,
\mathbf{E}^{\parallel }_{above} = \mathbf{E}^{\parallel}_{below}.
My question is what is...
define charge at an infinitesimal length of arc
$$dQ = \lambda R d \theta$$We only care about the x component of the electric field because the y components cancel due to symmetry
$$dE_x = \frac{k_e dQ}{R^2} cos \theta$$
Integrate to add up the infinitesimal parts. A quarter circle means 90...
I am able to get V1 = kq/a - 4kq/b
and V2 = kq/b + -4kq/b
For some reason the solution says it is V1-V2 as opposed to V2-V1.
Maybe has something to do with positive shell in the center and negative outer shell? I know the electric field goes from positive to negative, but I don't know how...
We know the net force on the charged particle in the uniform electric field pointing up is mg - qE.
To get acceleration, divide the net force by mass to get g - qE/m
Plug into kinematic equation and get velocity by itself and substitute$$\sqrt{h(2g - \frac{q \sigma}{\epsilon_o m})}$$
λ1 = 3 microC/m λ2= -4 microC/m
__________ . __________
l----L1---l-a1-l-a2-l-----L2---l
(Not to scale)
L1 = length of rod 1 (1m)
a1 = length of end of rod 1 to point (0.7m)
L2 = length of rod 2 (1m)
a2 = length of end of rod 2 to point (0.3m)
k = e field constant...
This is the question ... I have it's solution ...
My problem : I can't understand why dx=R/cos^2(teta) dteta
I have thought many hours but I couldn't find it's reason ... Can anyone please help with this ?!
Hi ...
How can I find the electric field due to a thin circular ring of radius a and charge q for points outside the plane of the ring?
The distance from the center of the ring to the point of the electric field is large compared to the radius of the ring.
I have answered it but I don't know if...
I'm having an exam soon so i want to make sure. Is the electric field here zero?? cause if i draw gauss surface covering both of them they should cancel out or am i wrong.
I know that inside region 1, the D-field is zero as it is a conducting sphere, the E-field must be zero. It makes sense that in region 2 (inside the dielectric) there is a D-field.
My question is, is there a D-field outside the dielectric material (r>R)? Obviously there will be an E-field, but...
If a electrically charged mass travels thru a magnetic(m) field, it will accelerate at right angles to its velocity and the m-field. Under some conditions like this the charged mass will travel in a circular loop due to this magnetic force acceleration. This info is all over the internet. e.g...
Greetings everyone
I work at a company that sells chargers for electric vehicles and I’m working on the electrical projects.
The chargers I work with, are alternating current (AC) and the main mode here is a three-phase installation 220 V, at 7.04 kW with a current of 32 amps.
If the system...
I believe I have all parameters set up correctly to evaluate part A of this problem but I am unsure of the bounds.
I can't integrate from 0 to R because that part of this sheet has a hole there. I need to integrate from R to the other end of the sheet.
Im not sure how I would figure out the...
I wanted to post my work so far to see if I am on the right path toward the correct answer so far.
I have attached a ss of the actual problem and my work in the attachments
Im having trouble understanding the wording to this problem. When it says "from r=0 to r=infinity". My Qenc would zero out. I guess it makes sense that from infinitely far away you wouldn't "feel' the electric field but considering this question leads to 4 other questions I don't think I am...
I've calculated the intensity for every point charge which are
EA = 6.741 x 10¹³ NC¯¹
EB = 4.494 x 10¹¹ NC¯¹
EC = 6.741 x 10¹³ NC¯¹
and I am pretty sure about this far but I am struggling to calculate the X-axis intensity and Y-axis intensity to find the entire approximate intensity with the...
I encountered a problem regarding the appropriate sign needed to be taken for the work done on a dipole when it rotates in a uniform electric field and would appreciate some help.
The torque on a dipole can be defined as
τ=PEsinθ
The work done on a dipole to move it from an angle ##\theta_0##...
Hi. A electromagnetic wave consists of an electric and a magnetic component. I believe that the electric field strength is measured in volts per meter. The magnetic field I think is measured in Tesla. Let's imagine that I measure the electic field strength of two different radio stations and...
Hi,
We know that a varying magnetic field creates and induced electric field, and a varying electric field creates an induced magnetic field.
If there is a varying electric field (let's say sinusoidal), then this electric field creates an induced magnetic field. And if this produced magnetic...
According to theory I should be able to get the Electric Field (E) from its pOtential (V) by doing the grad (V) so
E = -grad(V), however, V is contant V = k*lambda* pi which results having E =0, but this is not right. What I am missing??
see figure below
The answer should be Ex = 2*k*lambda / r...
From the second equation I get that,
##\vec D =\frac{q}{4\pi \vec r^2}\hat r##
From first equation I get that
##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}##
But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}##
While writing the comment my mind said...
The dielectric strength of air (ie the maximum electric field that the material can withstand under ideal conditions without undergoing electrical breakdown and becoming electrically conductive) is 3 000 kV ( https://en.wikipedia.org/wiki/Dielectric_strength#Break_down_field_strength ).
In...
While reading about electromagnetism from the OpenStax books with my son (and doing some experiments), he asked this question.
Suppose I hang a pendulum and make it oscillate inside a coil connected to a Galvanometer as shown in the schematic diagram:
Hopefully the image is clear enough. His...
So I have been given a uniform electric field ##\vec{E}=20 V/m## in the direction as show in the image. I have been told to calculate the potential difference ##VC - VA##. According to the teacher (on YouTube) the potential difference ##VC - VA = -10\sqrt{2}V##. But I say it's ##-20 V## as...