Electric Definition and 1000 Threads

Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.
The presence of an electric charge, which can be either positive or negative, produces an electric field. The movement of electric charges is an electric current and produces a magnetic field.
When a charge is placed in a location with a non-zero electric field, a force will act on it. The magnitude of this force is given by Coulomb's law. If the charge moves, the electric field would be doing work on the electric charge. Thus we can speak of electric potential at a certain point in space, which is equal to the work done by an external agent in carrying a unit of positive charge from an arbitrarily chosen reference point to that point without any acceleration and is typically measured in volts.
Electricity is at the heart of many modern technologies, being used for:

Electric power where electric current is used to energise equipment;
Electronics which deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.Electrical phenomena have been studied since antiquity, though progress in theoretical understanding remained slow until the seventeenth and eighteenth centuries. The theory of electromagnetism was developed in the 19th century, and by the end of that century electricity was being put to industrial and residential use by electrical engineers. The rapid expansion in electrical technology at this time transformed industry and society, becoming a driving force for the Second Industrial Revolution. Electricity's extraordinary versatility means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. Electrical power is now the backbone of modern industrial society.

View More On Wikipedia.org
  1. A

    I Calculating Total Electric Charge with a Capacitor and Battery

    With a capacitor with a dielectric with the battery on, ##E_{total} = E_0 + E_i## ##\frac{Q_t}{dC_t} = \frac{Q_0}{dC_0} + \frac{Q_i}{dC_i}## thus, ##\frac{Q_t}{C_t} = \frac{Q_0}{C_0} + \frac{Q_i}{C_i}## since in a battery ##V_t = V_0, V_i = 0##, so either ##Q_i = 0## or ##C_i = infinite## but...
  2. MatinSAR

    Problem about electric potential

    Can anyone help me how to solve this problem ?! I am sure that my answer is not right :
  3. shivajikobardan

    The Potential of Electric Vehicle Energy Storage: Exploring V2G

    How can electric vehicle deliver energy to grid? This is the one of the few block diagrams that I could see in google. Do you have better one or can you explain this one? If I am not wrong. V2G is basically giving excess charge in your EV back to the grid.
  4. BnayaMeir

    Surface Current and Electric Field

    Hi everyone! I'm pretty new in this forum, I found the topics here very relevant to my physics course. And here is my question: Given the following drawing, two infinite sheets (in y and z axis) of ideal conductive material. their thickness is infinitesimal (dx->0). The electric field is...
  5. A

    Understanding Electric Field of Positive & Negative Plates

    I am confused with the solution. It says ##\vec E = \frac{\sigma}{\epsilon_0}##. Shouldn't E = ##2*\vec E = 2*\frac{\sigma}{\epsilon_0}##? Electric field of the positive plate and electric field of the negative plate.
  6. A

    I Electric field is zero in the center of a spherical conductor

    Electric field is 0 in the center of a spherical conductor. At a point P (black dot), I do not understand how the electric field cancels and becomes 0. Electric field is in blue.
  7. A

    I Electric field, flux, and conductor questions

    1) Why is the electric field 0 at the bottom of Gaussian surface? Isn't the electric field on both sides of the surface, pointing down and outwards like a plane of charge? see image. 2) Why does a charge distribution with cylindrical symmetry have to be infinitely long? 3) My book says a...
  8. A

    I Calculation of electric flux on trapezoidal surface

    I am confused at this calculation of the electric flux through a trapezoidal surface. The flux in should equal the flux out. The flux in equals -E*A1 where A1 is the area of the bottom of the trapezoid. The flux out equals E*A2 where A2 is the area of the top of the trapezoid. But the two fluxes...
  9. A

    Sphere and electric field of infinite plate

    The solution says that the tension in the string in the negative x direction is balanced by the force of the plate on the ball (red). Why is the repulsive force of the ball on the plate (in blue) not included in this calculation?
  10. A

    I What is wrong with crossing electric fields? Why can't you sum them?

    I do not understand why electric fields cannot cross. Can't you just sum the two electric fields vectors to get a net electric field?
  11. A

    I Electric field vector takes into account the field's radial direction?

    Does the electric field vector takes into account the field's radial direction? Usually when we calculate the electric field, we use ##\vec E = \frac{kq}{r^2}\vec j##, which is a straight line vector of a positive charge q's electric field. This electric field points from a positive charge q to...
  12. A

    Find the electric field everywhere resulting from two infinite planes

    What I don't understand is how come the electric field of the negative plane isn't pointing towards the positive plane (in blue) and cancelling out the electric field of the positive plane (in red). See image
  13. T

    I Energy of an electron in an electric circuit

    When an electron flows through a circuit say 250V, does it mean the electron possesses 250eV at any time or does it give out a total of 250eV
  14. V

    Understanding Fundamentals of Electronics: Solving an Electric Charge Problem

    It's not a homework. I came up with this problem myself. Trying to understand fundamentals of electronics. Do you know how to solve it? Is voltage somehow related to electron energy levels? What knowledge should I gain to be able to solve problems like that? Thank you! If we ground the cathode...
  15. B

    I Incident electric field attenuation near a metallic plate

    Hello everybody, I was visualizing the electric field radiation pattern of an antenna in a 3D EM simulation software (CST), and to see it with my eyes made me realize something I probably heard during my studies but forgot. What is the phenomenon behind what you can see below, which is the...
  16. Harikesh_33

    I Question regarding the use of Electric flux and Field Lines

    1)Field Lines is supposed to represent the electric field around a charge ,now we can draw infinite field lines around a charge and sinc Electric flux is No of Field Lines /area ,does it become infinite ,the whole concept of field lines is quite in the Gray Area for me ,I can in theory mark...
  17. J

    Velocity of two masses due to electric potential energy

    We can find the potential energy by finding the potential difference between the two masses. the minimum distance between the two masses is 10 cm. The maximum is 30 cm because they can be 3 string lengths apart as they repulse each other once the string is cut. So, to get potential difference...
  18. J

    What is the electric field inside an infinite cylinder?

    3 cm is inside the cylinder. We can use a gaussian cylinder to enclose the inside of the cylinder up to 3 cm. Because the outer cylinder is infinite there is no flux out of the end caps with the inner cylinder. There is also no charge enclosed in the cylinder. So the electric field 3cm away from...
  19. J

    Electric Field Inside a Gaussian Surface with Point Charge q

    If I have a point charge q right outside of a gaussian surface, it makes sense that the flux is zero inside the surface because the electric field going in equals the electric field going out. However, how would the electric field be zero inside? Wouldn't it just take on the electric field of...
  20. G

    Calculating Electric Field at Point P(0,0'03,0'04)

    At point ##P(0,0'03,0'04)## the field caused by the sphere is added to the field caused by the plane. First, ##E_\sigma## $$E_\sigma=\dfrac{\sigma}{2\varepsilon_0}=\dfrac{0,2\cdot 10^{-6}}{2\varepsilon_0}=11299,44\, \textrm{V}/\textrm{m}$$ Then, ##E_0##: Because ##r<R##...
  21. Salmone

    I Something about retarded potentials for oscillating electric dipole

    In a problem of an oscillating electric dipole, under appropriate conditions, one can find, for the potential vector calculated at the point ##\vec{r}##, the expression ##\vec{A}=\hat{k}\frac{\mu_0I_0d}{4\pi}\frac{cos(\omega(t-r/c))}{r}## where: ##\hat{k}## is the direction of the ##z-axis##...
  22. G

    Flux of the electric field that crosses the faces of a cube

    a) $$\phi_T=\phi_F-\phi_I=10^4\cdot 4\cdot 4-10^4\cdot 4\cdot 4=0\, \textrm{Nm}^2/\textrm{C}$$ b) $$\phi_F=\underbrace{300\cdot 4}_{\vec{E}}\cdot \underbrace{4\cdot 4}_{\textrm{area}}=19200\, \textrm{Nm}^2/\textrm{C}$$ $$\phi_0 = 300\cdot 0\cdot 4\cdot 4=0\, \textrm{Nm}^2/\textrm{C}$$ Then...
  23. G

    Doubts about the electric field created by a ring

    I have the calculation of the electric field created by a ring of radius ##R## uniformly charged with a linear density of charge ##\lambda## at any point on the axis perpendicular to its surface (##z## axis), but I have some doubts about it. I'll leave you the calculation done first: In ##x##...
  24. J

    Calculating the Electric field inside an infinite planar slab using Gauss' Law

    Draw a Gaussian pill box that starts from 0 (half way between the slab) and extends towards 2 cm.$$A \times \int_{0}^{0.02} \rho dz$$ I'm not sure if I should multiply the integral by A (area) or V (volume) And if area would I multiply by 0.02^2? I'm confused here. Thanks for your help.
  25. S

    Exploring Electric Field Boundaries at a Charge Density Boundary

    Hey, I have a really short question about electrostatics. The boundary conditions are : \mathbf{E}^{\perp }_{above} - \mathbf{E}^{\perp}_{below} = -\frac{\sigma}{\varepsilon_{0}}\mathbf{\hat{n}} , \mathbf{E}^{\parallel }_{above} = \mathbf{E}^{\parallel}_{below}. My question is what is...
  26. J

    Find the electric field of a charged arc a distance R away

    define charge at an infinitesimal length of arc $$dQ = \lambda R d \theta$$We only care about the x component of the electric field because the y components cancel due to symmetry $$dE_x = \frac{k_e dQ}{R^2} cos \theta$$ Integrate to add up the infinitesimal parts. A quarter circle means 90...
  27. A

    Electric Potential Difference -- Conceptual Question

    I am able to get V1 = kq/a - 4kq/b and V2 = kq/b + -4kq/b For some reason the solution says it is V1-V2 as opposed to V2-V1. Maybe has something to do with positive shell in the center and negative outer shell? I know the electric field goes from positive to negative, but I don't know how...
  28. J

    Find net velocity of charged particle in electric field (symbols only)

    We know the net force on the charged particle in the uniform electric field pointing up is mg - qE. To get acceleration, divide the net force by mass to get g - qE/m Plug into kinematic equation and get velocity by itself and substitute$$\sqrt{h(2g - \frac{q \sigma}{\epsilon_o m})}$$
  29. J

    Find the electric field at a point away from two charged rods

    λ1 = 3 microC/m λ2= -4 microC/m __________ . __________ l----L1---l-a1-l-a2-l-----L2---l (Not to scale) L1 = length of rod 1 (1m) a1 = length of end of rod 1 to point (0.7m) L2 = length of rod 2 (1m) a2 = length of end of rod 2 to point (0.3m) k = e field constant...
  30. MatinSAR

    How can I find "dx" in a straight line of electric charge?(Picture)

    This is the question ... I have it's solution ... My problem : I can't understand why dx=R/cos^2(teta) dteta I have thought many hours but I couldn't find it's reason ... Can anyone please help with this ?!
  31. MatinSAR

    How Is the Electric Field Calculated for a Point Outside a Charged Ring?

    Hi ... How can I find the electric field due to a thin circular ring of radius a and charge q for points outside the plane of the ring? The distance from the center of the ring to the point of the electric field is large compared to the radius of the ring. I have answered it but I don't know if...
  32. bluesteels

    Exam Prep: Electric Field - Is It Zero?

    I'm having an exam soon so i want to make sure. Is the electric field here zero?? cause if i draw gauss surface covering both of them they should cancel out or am i wrong.
  33. R

    Displacement Electric Field Outside Dielectric Material

    I know that inside region 1, the D-field is zero as it is a conducting sphere, the E-field must be zero. It makes sense that in region 2 (inside the dielectric) there is a D-field. My question is, is there a D-field outside the dielectric material (r>R)? Obviously there will be an E-field, but...
  34. G

    B A moving magnet in a linear electric field

    If a electrically charged mass travels thru a magnetic(m) field, it will accelerate at right angles to its velocity and the m-field. Under some conditions like this the charged mass will travel in a circular loop due to this magnetic force acceleration. This info is all over the internet. e.g...
  35. Skinbleu

    What is the maximum line current for an electric vehicle charger?

    Greetings everyone I work at a company that sells chargers for electric vehicles and I’m working on the electrical projects. The chargers I work with, are alternating current (AC) and the main mode here is a three-phase installation 220 V, at 7.04 kW with a current of 32 amps. If the system...
  36. guyvsdcsniper

    Electric Field acting on a point charge

    I believe I have all parameters set up correctly to evaluate part A of this problem but I am unsure of the bounds. I can't integrate from 0 to R because that part of this sheet has a hole there. I need to integrate from R to the other end of the sheet. Im not sure how I would figure out the...
  37. guyvsdcsniper

    Electric field lines of H2O molecule

    I wanted to post my work so far to see if I am on the right path toward the correct answer so far. I have attached a ss of the actual problem and my work in the attachments
  38. guyvsdcsniper

    Electric Field as a function of r, evaluating bounds

    Im having trouble understanding the wording to this problem. When it says "from r=0 to r=infinity". My Qenc would zero out. I guess it makes sense that from infinitely far away you wouldn't "feel' the electric field but considering this question leads to 4 other questions I don't think I am...
  39. emmanual

    Electric field due to three point charges

    I've calculated the intensity for every point charge which are EA = 6.741 x 10¹³ NC¯¹ EB = 4.494 x 10¹¹ NC¯¹ EC = 6.741 x 10¹³ NC¯¹ and I am pretty sure about this far but I am struggling to calculate the X-axis intensity and Y-axis intensity to find the entire approximate intensity with the...
  40. S

    Work done on dipole and potential energy in uniform electric field

    I encountered a problem regarding the appropriate sign needed to be taken for the work done on a dipole when it rotates in a uniform electric field and would appreciate some help. The torque on a dipole can be defined as τ=PEsinθ The work done on a dipole to move it from an angle ##\theta_0##...
  41. Billygibson2

    What electric motor do I need to rotate a platter that weighs 6 - 10lbs?

    Would a DC motor that had torque of 0.34 Nm be able to generate enough power to rotate a platter that weighs 6 - 10lbs
  42. R

    I Relation between electric & magnetic fields in terms of field strength

    Hi. A electromagnetic wave consists of an electric and a magnetic component. I believe that the electric field strength is measured in volts per meter. The magnetic field I think is measured in Tesla. Let's imagine that I measure the electic field strength of two different radio stations and...
  43. B

    I Induced Electric and Magnetic Fields Creating Each Other

    Hi, We know that a varying magnetic field creates and induced electric field, and a varying electric field creates an induced magnetic field. If there is a varying electric field (let's say sinusoidal), then this electric field creates an induced magnetic field. And if this produced magnetic...
  44. iochoa2016

    The electric field from its electric potential: semicircle

    According to theory I should be able to get the Electric Field (E) from its pOtential (V) by doing the grad (V) so E = -grad(V), however, V is contant V = k*lambda* pi which results having E =0, but this is not right. What I am missing?? see figure below The answer should be Ex = 2*k*lambda / r...
  45. Istiak

    Find electric field inside a material

    From the second equation I get that, ##\vec D =\frac{q}{4\pi \vec r^2}\hat r## From first equation I get that ##\vec E = \frac{q}{4\pi \vec r^2 \epsilon}=\frac{q}{4\pi \vec r^2 K \epsilon_0}## But I saw that the answer is ##\vec E=\frac{\vec E_0}{K}## While writing the comment my mind said...
  46. ilovepudding

    I Dielectric breakdown voltage of air vs. Electric field in thunderstorm

    The dielectric strength of air (ie the maximum electric field that the material can withstand under ideal conditions without undergoing electrical breakdown and becoming electrically conductive) is 3 000 kV ( https://en.wikipedia.org/wiki/Dielectric_strength#Break_down_field_strength ). In...
  47. K

    B Magnetic pendulum and electric energy....

    While reading about electromagnetism from the OpenStax books with my son (and doing some experiments), he asked this question. Suppose I hang a pendulum and make it oscillate inside a coil connected to a Galvanometer as shown in the schematic diagram: Hopefully the image is clear enough. His...
  48. samy4408

    I Why in an electric circuit with only a generator the resistance R=infinity?

    Why in an electric circuit with only a generator the resistance R=infinity? [Newbie's post edited by a Mentor to delete extraneous embellishment]
  49. NoahCygnus

    Potential difference between two points in an electric field

    So I have been given a uniform electric field ##\vec{E}=20 V/m## in the direction as show in the image. I have been told to calculate the potential difference ##VC - VA##. According to the teacher (on YouTube) the potential difference ##VC - VA = -10\sqrt{2}V##. But I say it's ##-20 V## as...
Back
Top