Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others.
The presence of an electric charge, which can be either positive or negative, produces an electric field. The movement of electric charges is an electric current and produces a magnetic field.
When a charge is placed in a location with a non-zero electric field, a force will act on it. The magnitude of this force is given by Coulomb's law. If the charge moves, the electric field would be doing work on the electric charge. Thus we can speak of electric potential at a certain point in space, which is equal to the work done by an external agent in carrying a unit of positive charge from an arbitrarily chosen reference point to that point without any acceleration and is typically measured in volts.
Electricity is at the heart of many modern technologies, being used for:
Electric power where electric current is used to energise equipment;
Electronics which deals with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies.Electrical phenomena have been studied since antiquity, though progress in theoretical understanding remained slow until the seventeenth and eighteenth centuries. The theory of electromagnetism was developed in the 19th century, and by the end of that century electricity was being put to industrial and residential use by electrical engineers. The rapid expansion in electrical technology at this time transformed industry and society, becoming a driving force for the Second Industrial Revolution. Electricity's extraordinary versatility means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications, and computation. Electrical power is now the backbone of modern industrial society.
My general understanding of electric flux density is 'electric flux per unit area'. This gives the SI unit N/C. But According the formula of electric flux density, D=eplison*E, the SI unit is C/m^2. How come the dimension in both cases not matching if both are true?
I have read three definitions of electric flux in textbook which is confusing me..
1. Electric flux is the number of electric lines passing through any area of a surface.
2. Electric flux is the number of electric lines passing through unit area per second held perpendicularly.
3. Electric flux...
Electric Flux = E*A = 5*6(0.05)^2.
when i look up at other sources they use Electric flux = q/ (8.854*10^-12 [this is e]) equation
but I am confused on why the E*A equation don't work. The answer is 0.02Nm^2/C
As shown in figure below, the electric field E will be normal to the cylinder's cross sectional A
even for distant points since the charge is distributed evenly all over the charged surface and also the surface is very large resulting in a symmetry. So the derived formula should also apply to...
Hi all!
I was wondering,
Is it possible, given a specific dipolar molecule, to create the perfect oscillating electric field so as to heat it and not, i.e. the water around it?
What I'm basically asking is could there exist a specific microwave just for X and not all dipolar molecules without...
I am having some problems involving the force that a source moving with speed v along the x-axis would exert on a test charge at the x axis.
Moving to the frame of the source charge, we got that the electric field it exerts is $$E' = kq/x'²$$
Now, moving back to the lab frame, and considering...
Picture: Energy source => LR Oscillator => Transformer => Transmission line => Electric dipole antenna => traveling wave
Why would the charge even oscillate in the antenna as opposed to building up in the antenna? The transmission line + antenna is not a closed circuit right?
A thin shell in reality doesn't have zero thickness. Consider the image below, showing a cross-section of a small portion of the shell:
Here we are considering a more general case in which we have electric fields of magnitude ##E_1## and ##E_2## on each side of the shell.
Gauss's Law...
What am I missing?
I also don't get the title of the section: "Charge distributions with enough symmetry for Gauss's Law".
I thought Gauss's Law was valid for any closed surface enclosing a charge. I don't understand what "enough symmetry" means in the title above. I get that with symmetry...
Using Gauss's Law
By using a symmetry argument, we expect the magnitude of the electric field to be constant on planes parallel to the non-conducting plane.
We need to choose a Gaussian surface. A straightforward one is a cylinder, ie a "Gaussian pillbox".
The charge enclosed is...
I am interested in particular in the second integral, in the ##\hat{r}## direction.
Here is my depiction of the problem:
As far as I can tell, due to the symmetry of the problem, this integral should be zero.
$$\int_0^R \frac{r^2}{(x^2+r^2)^{3/2}}dr\hat{r}$$
I don't believe I need to...
The strategy will be to figure out what ##dq##, ##\hat{r}_{dq,p}##, and ##r_{dq,p}## are, plug them into the expression for ##d\vec{E}_{p_r}##, then integrate over ##d\vec{E}_{p_r}## to obtain ##\vec{E}_{p_r}##, the electric field at ##P## due to the arc on the right.
Then I will repeat the...
I read that a kg of gas provides about 13kWh (47.5MJ) of energy and that burning a kg of gas emits about 3.15 kg of CO2. So presumably a gas-powered engine emits 3.15/13 or about .242kg of CO2 per kWh of work, right?
According to the EIA, the US electric grid emits about 0.85lb or 0.386kg of...
Hi all,
I have a doubt when calculating the electric field of a uniformly polarized cylinder P along its longest axis. The cylinder has length L and radius a.
Using Gauss's law:
$$\int D\cdot ds = \rho_{f} =0 \, \, (eq .1)$$
The electric field inside of cylinder would be: $$E =-...
The net Electric field(inside the dielectric):
$$E_{net} = \frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2}$$
$$\vec E_{net} = \vec E_{applied} - \vec p$$
where p is the polarization vector.
let charge ##q_{-}## be present on the inner surface of dielectric and ##q_{+}## on the outer...
Hi folks,
I'm searching for information/procedure and also calculations/equations on how to correctly wind a stator on a (general or DC 3-phase) brushless motor? I.e. how to wind a copper wire X number of times around the stators, and thus get the desired performance/force that is required...
Hello, any answers appreciated:
'Two spheres are 5 m apart. Sphere 1 has a charge of -20 mC and sphere two has a charge of -50 mC. (a) Find the strength of the electric field at the sphere's halfway point. (b) Find the electric potential at the halfway point
Okay so this is how it looks like,and there are the given values;
a) I've tried it like this. So I now this formula $$ E = \frac{J}{\sigma} $$ where sigma is the conductivity value. Now to get E we need this formula;
$$ U = \int_{l}{} E \ ds ] $$ Now to get U we can use the ## U = \frac{P}{I}...
Hello. I am having some trouble to understand the resolution of this question.
We could easily try to calculate the electric field relative resultant at the screen. The problem i am having is about the amplitude of the electric field:
Generally, we have that the intensity part dependent of the...
hi guys
our instructor asked us to try to graph the projection of the electric field intensity at a certain point p(x,y) , for two charges q+-q located
at (-a,0) , (a,0), Now starting with the equation
$$\frac{dy}{dx} = \frac{E_{y}}{E_{x}}$$
after transforming this equation I got...
Hello! I am susposed to find the force of q3.The problem is given as in the picture ;
Now we are given a hint,and it says the following:
"First calculate the forces of the individual charges on q3. The superposition principle says that you can then simply add these forces vectorially
to get...
I'm preparing for exam but it seems I can't find problems similar to this on the internet.
Here I will apply Gauss's law on the electric field vector to get the charge density. but the problem is that I can't find similar examples on the internet that uses direct vectors on Maxwell's equations...
So I started with b)
and it there was no q2 this would seem reasonable
I was wanted to ask , what effect does q2 have on potential of these two charges? Because it has to be given for a reason.
My approach is thus: the shell will have induced charges if it's conducting resulting in E at the centre of shell(though flux at centre will be 0). For non conducting spheres there can be no induction only polarization of dipoles, therefore the E field at centre will remain 0. Is my approach...
Hello! Is it possible to build a setup (containing time dependent and independent electric fields), such that a charged particle will feel a force proportional to its velocity i.e. ##ma = -\alpha v##?
I have been having a hard time understanding Electric Potential and believe I finally have a grasp on what is trying to say. I wanted to right out my understanding here and hopefully have someone confirm what I am saying is somewhat accurate as I feel like when you write stuff out you tend to...
So the change in potential energy is ∆U = Uf-Ui. Final minus initial. If i solve the above problem like this I end up with a negative value. The way the person in the attached work solved the problem, is they used ∆U = Ui-Uf. How are the switching Ui and Uf? What is it I am missing?
I am having trouble understand where area circled in red.
I get that lamda is Q/L. The charge is +Q. Length is pi/R/2.
I am having trouble understanding why the length is pi/R/2? Is it because the circumference of a circle is 2*pi*R and since we have broken this problem down to just...
Hi , I've been trying to manage a solution in my head and i think I'm on the right path , i just need some approval and maybe some tips.
So it's obvious I can't solve this without integration because law's only apply to point charges , and i can't shrink this object to a point as i could do with...
A science team from the university of Kassel (Germany) proved with a physical model, that a moderate electric field inactivates the Convid-19 virus.
Source:
https://www.nature.com/articles/s41467-021-25478-7
via...
I have tried to understand the solution given in the book which is as pasted below. The solution uses Gauss's Law but makes no mention of which Gaussian surface is used. The diagram that I have used to understand this problem is also given at the end. From the diagram, faces OADG, OABE and OEFG...
I noticed that in some textbooks (Physics - Tipler) the electric flux formula is different than in other textbooks (Engineering Electromagnetics -W. Hayt)
Which one should we use?
My understanding is that the uniform electric field ##\vec E## cannot be the net electric field since the dipole creates its own electric field as shown in first diagram below, which must superimpose with the uniform electric field. So, yes, the uniform electric field ##\vec E## around the...
In a previous thread* the field in a charged ring was discussed and it was shown to be not zero except at the center. In *post #45 a video is referenced that says the field diverges as one gets close to the ring and it was argued that at very close distances the field looks like an infinite line...
Example of emf due to Lorentz magnetic force is motional emf. When rod PQ moves to the left, there will be downwards magnetic force acting on the positive charge in the rod PQ so point Q is at higher potential compared to point P so there will be potential difference (emf) between P and Q
The...
The first part of the problem seems easy enough, the free electrons in the wire would move in a circle owing to an electric field that would be induced in the rod which would provide the centripetal force for the same (Please correct me if I am wrong). So we have $$eE=mω^2x$$, where e is the...
I am wondering if the phase diagram of Carbon has been explored at very large electric fields.
Can one make any theoretical guesses ?
In specific I am interested in Pressure Vs Electric field and Electric field vs Temperature at fixed temperature and pressure respectively.
In the 7th edition of the book "Elements of Electromagnetics by Matthew N. O. Sadiku"
On page 190 the author goes on to say:
"We now consider the case in which the dielectric region contains free charge.
If ##\rho_v## is the volume density of free charge, the total volume charge density...
Hello All!
You know sometimes you touch another person and you felt an electric spark between both of you, or sometimes with things like the door handle, etc. I moved lately to a hot and dry country where the temperature is around 40-45 Celcius degrees now in August, but since I moved here this...
I have broken the ring into a top arc and a bottom arc.
First, let's assume an imaginary charge of +1 C is placed at point P. We will determine the force on this unit charge from top and bottom arcs.
The charges in the top arc will result in electric fields that will all cancel each other...
Good afternoon to everybody. I have may be a stupid question according to the tangential part of the electric field near the surface of the conductor. Why is it zero? The normal part is zero on the distance of Debye cause of screening. But is this situation the same for horizontal direction...
When I look at the relevant equations, then there is no mention of field for a point on the surface of the shell, so it gets confusing. On the other hand, I feel the radial E will get stronger as we approach the surface of shell and magnitude of E will approach infinity.