In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced the diagrams in 1948. The interaction of subatomic particles can be complex and difficult to understand; Feynman diagrams give a simple visualization of what would otherwise be an arcane and abstract formula. According to David Kaiser, "Since the middle of the 20th century, theoretical physicists have increasingly turned to this tool to help them undertake critical calculations. Feynman diagrams have revolutionized nearly every aspect of theoretical physics." While the diagrams are applied primarily to quantum field theory, they can also be used in other fields, such as solid-state theory. Frank Wilczek wrote that the calculations which won him the 2004 Nobel Prize in Physics "would have been literally unthinkable without Feynman diagrams, as would [Wilczek's] calculations that established a route to production and observation of the Higgs particle."Feynman used Ernst Stueckelberg's interpretation of the positron as if it were an electron moving backward in time. Thus, antiparticles are represented as moving backward along the time axis in Feynman diagrams.
The calculation of probability amplitudes in theoretical particle physics requires the use of rather large and complicated integrals over a large number of variables. Feynman diagrams can represent these integrals graphically.
A Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory. Within the canonical formulation of quantum field theory, a Feynman diagram represents a term in the Wick's expansion of the perturbative S-matrix. Alternatively, the path integral formulation of quantum field theory represents the transition amplitude as a weighted sum of all possible histories of the system from the initial to the final state, in terms of either particles or fields. The transition amplitude is then given as the matrix element of the S-matrix between the initial and the final states of the quantum system.
Homework Statement
In an ABC toy theory, the only allowed vertex is one that couples A, B and C. Thus there are no AAA, ABB, ACC...ect vertices allowed. My question is suppose a diagram has na external A lines, nb external B lines, and nc external C lines. Develop a simple criterion for...
Hi!
I wonder if the Feynman rules in momentum space can also be applied to disconnected diagrams. So aussume I have a disconnected Feynman diagram 1 , i.e. the product of two connected Feynman diagrams 2 and 3.
I can translate my diagrams with the position space Feynman rules to explicit...
in peskin-schroeder and http://www.hep.phy.cam.ac.uk/batley/particles/handout_04.pdf" the amplitude for e^-e^+\rightarrow \mu^- \mu^+ is written using feynman rules as follows
-iM=[\bar{v}(p_2)(-ie\gamma^\mu )u(p_1)] \frac{-ig_{\mu\nu}}{q^2}[\bar{u}(k_1)(-ie\gamma^\nu )v(k_2)]
but what...
[SOLVED] feynman rules
Hi , It is a simple question from the book of david j .griffiths :"introduction to elementary particles" (6.11)
Homework Statement
(a) Is A--->B+B a possible process in the ABC theory (feynman rules for a toy theory)
(b)Suppose a diagram has nA external A lines , nB...
I've been given a small project to ease me into life as a PhD student and part of it involves working out Feynman rules for scalar bosons coupling to gauge bosons.
I've been reading through Peskin and Schroder Chapter 9 and want to clarify if I've got my understanding right of how to do it...
What are the Feynman rules for phi to the sixth theory? Can anyone please help? Peskin and Schroeder does phi ^ 4th... I can't help thinking the derivation is the same for phi to the sixth, and that the rules are the same. Could that be correct?
Thanks so much for your time,
Job...