This function seems to be ##tr\left (t+\frac{\pi}{2}\right )-\frac{\pi}{2}## where ##tr(t)## is the triangle wave function.
$$tr(t)=|t|\ \ \ \ \ -\frac{\pi}{2}<t<\frac{\pi}{2}\tag{2}$$
##tr## has Fourier series
$$tr(t)=\frac{\pi}{2}-\frac{4}{\pi}\sum\limits_{n=1}^\infty...
Here is a little table I made with the values of ##b_n## for ##n=1,2,3,4,5,6##.
Is there a way to write a formula for ##b_n## not involving a trigonometric function?
Here is a plot
We see that this function has minimal period of ##\pi##.
Initially, the material was presented with functions that had a period of ##2\pi## and were explicitly defined on the interval ##[-\pi,\pi]## and defined everywhere else by ##f(x+n2\pi)=f(x)##.
Then it was shown that...
This is part of a problem in a problem set in MIT OCW's 18.03 "Differential Equations" course.
This problem uses a nice online applet made for playing with Fourier coefficients.
I was able to solve everything which mainly involved finding the coefficients both by tinkering with the UI and...
From this paper, I am trying to compute the coefficients in the expansion of the Gaussian wavepacket
$$\phi(x) = \frac{1}{(2\pi\sigma^2)^{\frac{1}{4}}}\exp \Big(-\frac{(x-x_{0})^{2}}{4\sigma^{2}} + ik_{0}(x-x_{0})\Big) $$ where $$\sigma << 1$$and $$k_{0} >> \frac{1}{\sigma}$$
in terms of the...
Hello everyone,
I've been delving deep into the realm of periodic functions and their properties. One of the fundamental concepts I've come across is the use of sines and cosines as an orthogonal basis for representing any functions. This is evident in Fourier series expansions, where any...
I'm studying Quantum Field Theory for the Gifted Amateur and feel like my math background for it is a bit shaky. This was my attempt at a derivation of the above. I know it's not rigorous, but is it at least conceptually right? I'll only show it for bosons since it's pretty much the same for...
Here, ##\Phi(f_{x_n},f_{y_m})=|\mathscr{F(\phi(x,y))}|^2 ## is the Power Spectral Density of ##\phi(x,y)## and ##\mathscr{F}## is the Fourier transform operator.
Parseval's Theorem relates the phase ##\phi(x,y)## to the power spectral density ##\Phi(f_{x_n},f_{y_m})## by...
Hi, a question regarding something I could not really understand
The question is:
Let V be a space with Norm $||*||$
Prove if $v_n$ converges to vector $v$.
and if $v_n$ converges to vector $w$
so $v=w$
and show it by defintion.
The question is simple, the thing I dont understand, what...
I have plotted the function for ##T=15## and ##\tau=T/30## below with the following code in Python:
import numpy as np
import matplotlib.pyplot as plt
def p(t,T,tau):
n=np.floor(t/T)
t=t-n*T
if t<(2*np.pi*tau):
p=np.sin(t/tau)
else:
p=0
return p...
From the statement above, since the ring is massless, there's no force acting vertically on the rings. Thus, the slope is null.
##\frac{\partial y(0,0)}{\partial x} = \frac{\partial y(L,0)}{\partial x} = 0##
##\frac{\partial y(0,0)}{\partial x} = A\frac{2 \pi}{L}cos(\frac{2 \pi 0}{L}) =...
Hello everyone first time here. don't know if it's the correct group... Am having some issues wiz my maths homework that going to count as a final assessment. Really Really need help.
The function (f), with a period of 2π is : f(x) = cosh(x-2π) if x [π;3π]..
I had to do a graph as the first...
Greetings
according to the function we can see that there is a jump at x=e and I know that the value of the function at x=e should be the average between the value of f(x) at this points
my problem is the following
the limit of f(x) at x=e is -infinity and f(e)=1
how can we deal with such...
Would someone be able to explain like I am five years old, what is the precise relationship between Fourier series and Fourier transform?
Could someone maybe offer a concrete example that clearly illustrates the relationship between the two?
I found an old thread that discusses this, but I...
Good day
I really don't understand how they got this result? for me the sum of the Fourier serie of of f is equal to f(2)=log(3)
any help would be highly appreciated!
thanks in advance!
The answer in the textbook writes: $$ f(x) = \frac{1}{4} +\frac{1}{\pi}(\frac{\cos(x)}{1}-\frac{\cos(3x)}{3}+\frac{\cos(5x)}{5} \dots) + \frac{1}{\pi}(\frac{\sin(x)}{1}-\frac{2\sin(2x)}{2}+\frac{\sin(3x)}{3} + \frac{\sin(5x)}{5}\dots)$$
I am ok with the two trigonometric series in the answer...
If given a set of data points for the magnitude of a cepheid variable at a certain time (JD), how can we use Fourier series to find the period of the cepheid variable?
I'm trying to do a math investigation (IB math investigation) on finding the period of the cepheid variable M31_V1 from data...
A beam of length L with fixed ends, has a concentrated force P applied in the center exactly in L / 2.
In the differential equation:
\[ \frac{d^4y(x)}{dx^4}=\frac{1}{\text{EI}}q(x) \]
In which
\[ q(x)= P \delta(x-\frac{L}{2}) \]
P represents an infinitely concentrated charge distribution...
Hi,
Question: If we have an initial condition, valid for -L \leq x \leq L :
f(x) = \frac{40x}{L} how can I utilise a know Fourier series to get to the solution without doing the integration (I know the integral isn't tricky, but still this method might help out in other situations)?
We are...
First, I try to define the function in the figure above: ##V(t)=100\left[sin(120\{pi}\right]##.
Then, I use the fact that absolute value function is an even function, so only Fourier series only contain cosine terms. In other words, ##b_n = 0##
Next, I want to determine Fourier coefficient...
Hello Everyone!
I want to learn about Fourier series (not Fourier transform), that is approximating a continuous periodic function with something like this ##a_0 \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)##. I tried some videos and lecture notes that I could find with a google search but...
Summary:: If ##f(x)=-f(x+L/2)##, where L is the period of the periodic function ##f(x)##, then the coefficient of the even term of its Fourier series is zero. Hint: we can use the shifting property of the Fourier transform.
So here's my attempt to this problem so far...
ANY AND ALL HELP IS GREATLY APPRECIATED :smile:
I have found old posts for this question however after reading through them several times I am having a hard time knowing where to start.
I am happy with the sketch that the function is correctly drawn and is neither odd nor even. It's title is...
This is written on Greiner's Classical Mechanics when solving a Tautochrone problem.
Firstly,I don’t understand why we didn’t use the term ##m=0##
and Sencondly, how the integrand helps us to fulfill the Dirichlet conditions. That means,how do we know that the period is 1?Thanks
In order to obtain equation (3), I think I have to do the Fourier transform in the x direction:
\begin{equation}
\tilde{G}(k,y,x_0,y_0) = \int_{- \infty}^{\infty} G(x,y,x_0,y_0) e^{-i k x} dx
\end{equation}
So I have:
\begin{equation}
-k ^2 \tilde{G}(k,y,x_0,y_0) + \frac{\partial^2...
Greg has kindly allowed me to post these equations which I compiled many years ago. Somehow I like them better than anything I've ever run across so maybe someone else will find them useful also.
Actually, I have given some thought to the Fourier series and how they tie in with sampled-data...
Hello, so for a Fourier series in the interval [-L,L] with L=L and T=2L the coefficients are given by
$$a_0=\frac{1}{L}\int_{-L}^Lf(t)dt$$
$$a_n=\frac{1}{L}\int_{-L}^Lf(t)\cos{\frac{n\pi t}{L}}dt$$
$$b_n=\frac{1}{L}\int_{-L}^Lf(t)\sin{\frac{n\pi t}{L}}dt$$
But if we have an interval like [0,L]...
Hi,
A function which could be represented using Fourier series should be periodic and bounded. I'd say that the function should also integrate to zero over its period ignoring the DC component.
For many functions area from -π to 0 cancels out the area from 0 to π. For example, Fourier series...
Homework Statement
Hello,
i am trying to do find the Fourier series of abs(sin(x)), but have some problems. As the function is even, bn = 0. I have calculated a0, and I am now working on calculating an. However, when looking at the solution manual, they have set up one calculation for n > 1...
Hi all. Could someone work out for me how equation 21 in attachment left side becomes right side. Please show in detail if you could.
It's for exponential Fourier series.
Drforbin
thank you
I know this may sound as a stupid question but I would like to clarify this.
An arbitrary function f can be expressed in the Fourier base of sines and cosines. My question is, Can this method be used to solve any differential equation?
You plug into the unkown function the infinite series and...
This is a rather simple question, but am I understanding the following correctly?
1. Homework Statement
The Attempt at a Solution
This isn't really the problem, but I have a feeling my problem the assignments, is me misunderstanding the function description. I don't see how this 2 pi...
Homework Statement
Find the Fourier spectrum ##C_k## of the following function and draw it's graph:
Homework Equations
3. The Attempt at a Solution [/B]
I know that the complex Fourier coefficient of a rectangular impulse ##U## on an interval ##[-\frac{\tau}{2}, \frac{\tau}{2}]## is ##C_k =...
Homework Statement
Homework Equations
The Attempt at a Solution
I am stuck trying to figure out why there are three different alphas and why in the equation we are supposed to use has a theta and what that means. If I can set up the Fourier series I can properley I know how to solve it for...
Hello,
I tried to compute the Fourier series coefficients for the Dirac comb function. I did it using both the "complex" formula and the "real" formula for the Fourier series, and I got :
- complex formula : Cn = 1/T
- real formula : a0 = 1/T, an = 2/T, bn = 0
This seems to be valid since it...
Homework Statement
Find the Fourier series of the function ##f## given by ##f(x) = 1##, ##|x| \geq \frac{\pi}{2}## and ##f(x) = 0##, ##|x| \leq \frac{\pi}{2}## over the interval ##[-\pi, \pi]##.
Homework Equations
From my lecture notes, the Fourier series is
##f(t) = \frac{a_0}{2}*1 +...
We have:
Period T = 4, so fundamental frequency w0 = pi/2.
This question seems sooo easy. But when I use the integral:
x(t) = Σa[k] * exp(i*k*pi/2*t).
I get 1 + sum(cos(k*pi/2*t)), which does not converge.
Where did I went wrong ?
Thanks a lot for your help.
Homework Statement
There is a sawtooth function with u(t)=t-π.
Find the Fourier Series expansion in the form of
a0 + ∑αkcos(kt) + βksin(kt)
Homework Equations
a0 = ...
αk = ...
βk = ...
The Attempt at a Solution
After solving for a0, ak, and bk, I found that a0=0, ak=0, and bk=-2/k...
I'm kinda just hoping someone can look over my work and tell me if I'm solving the problem correctly. Since my final answer is very messy, I don't trust it.
1. Homework Statement
We're asked to find the Fourier series for the following function:
$$
f(\theta)=e^{−\alpha \lvert \theta \rvert}}...
Homework Statement
In the following problem I am trying to extend the function $$f(x) = x $$ defined on the interval $$(0,\pi)$$ into the interval $$(-\pi,0)$$ as a even function. Then I need to find the Fourier series of this function.Homework EquationsThe Attempt at a Solution
So I believe I...
Homework Statement
Considering the function $$f(x) = e^{-x}, x>0$$ and $$f(-x) = f(x)$$. I am trying to find the Fourier integral representation of f(x).
Homework Equations
$$f(x) = \int_0^\infty \left( A(\alpha)\cos\alpha x +B(\alpha) \sin\alpha x\right) d\alpha$$
$$A(\alpha) =...
In the following question I need to find the Fourier cosine series of the triangular wave formed by extending the function f(x) as a periodic function of period 2
$$f(x) = \begin{cases}
1+x,& -1\leq x \leq 0\\
1-x, & 0\leq x \leq 1\\\end{cases}$$
I just have a few questions then I will be able...