Homework Statement
an Ideal gas at T = 70 C and 1 bar undergoes following reversible
processes:
a: Adiabatically compressed to 150 C
b: then, cooled from 150 to 70 C at constant pressure
c: finally, expanded isothermally to the original state (T=70 C and P = 1 bar)
Homework Equations...
Question (see attached diagram):
PV diagram with 7.5 moles of ideal diatomic gas through cycle a, b and c. What is the highest temperature reached by the gas during the cycle? (multiple choice answers 180, 325, 208 and 100 C, i know answer is 208 C but I'm not getting it!) It is a PV diagram...
Homework Statement
The tires on a bicycle require an air pressure of 80 psig. When isothermally pumped up the bicycle tires, the volume of the air (that was originally in the atmosphere) is reduced by a factor of 5.7. Please determine the work that must be done on each lbm of air that is pumped...
Homework Statement
A frictionless piston of mass m is a precise fit in the vertical cylindrical neck of a large container of volume V. The container is filled with an ideal gas and there is a vacuum above the piston. The cross-sectional area of the neck is A. Assuming that the pressure and...
Hi.
If an ideal gas of ##N## particles is allowed to expand isothermically to double its initial volume, the entropy increase is
$$\Delta S=N\cdot k_B \cdot \log\left(\frac{V_f}{V_i}\right)=N\cdot k_B \cdot \log\left(\frac{2V}{V}\right)=N\cdot k_B \cdot \log\left(2\right)\enspace .$$
This can...
Homework Statement
If air has a density of ρ0 on the surface, calculate its density as a function of the height y for two scenarios:
(a) the temperature is constant at T0;
(b) the temperature decreases linearly T(y) = T0 − ay.
Express your results using the given variables together the...
I'd like to create a simple model that demonstrates the basic values of thermodinamics of an ideal gas. I begin with two rooms, several molecules in them. Every data of every individual molecule is given (position, mass, speed, etc), so I can easily calculate the total energy, pressure...
Homework Statement
A cylinder fitted with a frictionless piston contains 5.0×10-4m3 of an ideal gas at a pressure of 1.0×105 Pa and temperature of 300K.
The gas is then
(i) heated at constant pressure to 450K, and then
(ii) cooled at constant volume to the original temperature of 300K. The...
Hi,
When calculating the energy of an ideal gas we neglect the potential energy and calculate the kinetic energy using:
K.E = 3 /2 n R T
My question is why do we not consider the electrostatic energy of the gas?
If I am trying to work out the internal energy of 1 mol of Radon, why do I...
Is it possible to calculate the rate of change of n with respect to rate of change of Pressure and rate of change of Temperature with V unknown but constant by PV = nRT?
Rate of change of Pressure and rate of change of temperature can be measured. R and V are constants.
Homework Statement
Hello,
I am not asking for the answer to an example, rather how the book got some numbers. The problem is an example from the book and shows me the solution but does not show the steps.
Given: The compressed air tank has a volume of .84 ft^3. The temperature is 70 F and the...
Homework Statement
What is the change in internal energy (in Joules) of an ideal gas that does 4.675x10^5J of work, while 2.95x10^6J of heat is transferred into the system and 7.95x10^6J of heat is transferred from the system to the environment? Calculate the change in temperature of the two...
Homework Statement
We are asked to derive the expression for the internal energy of an ideal Fermi degenerate gas using Sommerfeld expansions, writing out terms up to the fourth order in ##(\frac{T}{T_F} )## , that is, we must determine ## \alpha ## in the following expression: $$ U=...
We have a piston with ideal gas in it and a weight. The weight is placed on the piston.
The gas is heated externally and the gas expands. Will the expansion be isobaric or isothermal?
One argument would be: the expansion will be isobaric because the weight is providing constant pressure. The...
Hi all,
I need to estimate the mechanical work I can recover from expanding hot air through a gas turbine.
So far I am using the equation below, where Wrev is my ideal isentropic work, s the number of stages, n = k = ratio of specific heats, R gas constant, T1 is the inlet Temperature, Pin the...
Homework Statement
Homework Equations and the attempt at a solution:[/B]
AC is adiabatic and AB is isothermal.
Heat absorbed during process AC = 0 (adiabatic).
Heat absorbed during process CB = C_p \triangle T=-\frac{\gamma}{\gamma -1} (P_2V_3 - P_2V_2)
Heat absorbed during process BA =...
Ideal gas behavior condition is high temperature and low pressure, right? so is the book's answer to 10(a) ii wrong?
https://scontent-kul1-1.xx.fbcdn.net/v/t34.0-12/14996536_1455768127770250_1228715611_n.jpg?oh=750e2555f8229aa9a4eeb17e3e80b1fb&oe=5829A2EE...
Homework Statement
An isolated box contains two chambers separated by a thermally insulating but moveable partition. Both chambers contain dilute gas (same kind) at different densities and temperatures. The left chamber contains 1.0 x 10^22 particles at 25 degrees celsius and the right chamber...
Homework Statement
Two moles of a monatomic ideal gas are at a temperature of 300K. The gas expands reversibly and isothermally to twice its original volume. Calculate the work done by the gas, the heat supplied and the change in internal energy.
So:
T = 300K; ΔT = 0
n = 2; R = 8.314 J K-1...
I'm an undergraduate taking a physical chemistry course, and I got to a part in my reading about the derivation of the ideal gas law. The passage is linked below...
Homework Statement
For a diatomic gas near room temperature, the internal partion function is simply the rotational partition function multiplied by degeneracy ##Z_e## of the electronic ground state.
Show that the entropy in this case is
## S = Nk\left[ \ln \left(...
Homework Statement
The temperature across the capillary with constant cross-sectional area and length L is given by ##T=T_0e^{-kx}##. Assuming an ideal gas and constant pressure show the number of moles to be: $$n=\frac{PV(e^{kL} - 1)}{RkLT_0}$$
Homework Equations
##PV=nRT##
The Attempt at a...
Homework Statement
[/B]
There is a lid on a .25m diameter, .30m tall cylindrical container enclosing .021kg of air. The lid is held in place solely by atmospheric pressure. It take 220N of force to pull of the lid at an atmospheric pressure of 101kPa. What is the Temperature of the enclosed...
Homework Statement
An ideal gas with adiabatic index γ is taken around a complete thermodynamic cycle consisting of three steps. Starting at point A, the pressure is increased at constant volume V1 from P1 to P2 at point B. From point B to point C, the gas is allowed to expand adiabatically...
The question I'm stuck on is:
P = NKBT/(V-Nb) - aN2/(V2) -----> (1)
Re-arrange variables in the Van Der Waals equation of state, Eq. (1), so that V always appears in the equation as V/(3Nb) and P appears as 27b2P/a. Then T should appear in the combination 27b kBT/(8a). Call these...
Assume: Hydrostatic Situation, ideal gas
Use empirical formula T = T0 - Bz
I have rechecked my work several times and can't seem to find a mistake. The answer is supposed to be:
p2 = p1((T0 - Bz)/T0)(g/Bz)
dp/dz = -ρg Now substitute ideal gas equation for ρ
dp = -(p/RT)g dz
∫(1/p) dp...
Homework Statement
An ideal monatomic gas has initial pressure Po and occupies initial volume Vo. The gas undergoes an adiabatic expansion in which the volume is doubled. Calculate in terms of Po and Vo
a) the final pressure of the gas
b) the change in its enthalpy during the...
Homework Statement
If the Helmholtz Free Energy remains constant, estimate the final pressure of 1.0mol of an ideal gas in the following transformation: (1.0atm, 300k) → (pfinal, 600k). Given Sgas = R.
Homework Equations
A = U - TS
dA = -SdT - pdV
The Attempt at a Solution
If the Helmholtz...
Hello, PF!
I'm currently brushing up my fluid mechanics and came across some questions while studying the compressible flow of an ideal gas using Bernoulli's equation. First, consider incompressible flow in the following system
Neglecting any changes in elevation, the Bernoulli equation for...
Homework Statement
An ideal gass is at constant volume risen to a new pressure level of ##P_f##. Find te expression for the total heat brought to the system.
Homework Equations
3. The Attempt at a Solution [/B]
So ##PV=nRT## and ##E=Q## ##Q=C_v(T_f-T_i)## so i just have to find...
Homework Statement
For some gas specific heats for constant pressure and constant volume are calculated. Universal gas constant is R. Find the formula the helps identify the gas. Include only constants and given information.
Homework Equations
3. The Attempt at a Solution [/B]
Molar specific...
Hi.
In some statistical approaches (e.g. canonical ensemble), the particles of an ideal gas are non-interacting. Still, it's possible to derive the ideal gas law and other thermodynamic relations.
Wikipedia gives an equation for the speed of sound in an ideal gas. How can there be waves in a...
Homework Statement
The figure at the bottom shows a cylindrical tank of diameter D with a moveable 3.00-kg circular disk sitting on top. The disk seals in the gas inside but is able to move without friction. The gas inside is at temperature T. The height of the disk is initially at h = 4.00 m...
Homework Statement
A large tube filled with an ideal gas at pressure p1 and temperature T1 has a small break in it towards an envirronement at p2, with p1 much larger than p2. What is the flow rate through the hole to the outside of the tube.
Homework Equations
pv=rT
Δh+Δc2/2=δq-δl
h1 + c12 =...
Homework Statement
This is probably a real easy task for most, but I simply CANNOT manage to calculate it, even given the correct answer. I will translate it as best I can and hope I don't phrase it in a way that causes misunderstandings:
12 Moles of an ideal gas go through an Isobaric...
Homework Statement
A bubble comes from the bottom of the tank of water to the surface and triples in its volume. If the temperature of the tank of water doesn't deppend on the depth what is the depth of the tank that the bubble was at?
Homework Equations
##PV=nRT##
The Attempt at a Solution...
Homework Statement
A gas undergoes a cyclic process as shown in the figure above. The gas has gamma = 1.4. In the diagram A has volume V_A = 4.33 m^3, pressure P_A
Homework Equations
The Attempt at a Solution
[/B]
Hi Guys and Gals,
As I was pumping up a flat bike tyre, a weird thought occurred to me about the application of the ideal gas law.
Once the tyre essentially finds its physical dimension limitations (i.e. is shaped like a bike tyre and no longer changing shapes) and starts putting in reasonable...
So i am making a simple demonstration of ideal gas law using a cylinder piston system, heating the system so the piston is pushed up, i wanted to calculate the heat transferred into the system, will it be Cp(Tf-Ti) or Cp(Tf-Ti)+ work done by the system ?
Homework Statement
In the kinetic model of an ideal gas, it is assumed that:
A. The forces between the gas and the container are zero
B. The intermolecular potential energy of the molecules of the gas is constant.
C. The kinetic energy of a given gas molecule is constant
D. The momentum of a...
Homework Statement
A bottle with volume v containing 1 mole of argon is next to a bottle of volume v with 1 mole of xenon. both are connected with a pipe and tap and are same temp and pressure. the tap is opened and they are allowed to mix. What is the total entropy change of the system? Once...
Two Thermally insulated cylinders, A and B, of equal volume, both equipped with pistons, are connected by a valve. Initially A has its piston fully withdrawn and contains a perfect monatomic gas at temperature T, while B has its piston fully inserted, and the valve is closed. Calculate the final...
Homework Statement
Homework Equations
1) PV = nRT
2 )## P = ⅓ ρ<c^2> ##
3) KE ∝ T
The Attempt at a Solution
According to the second equation above, density is inversely proportional to root mean square speed at constant pressure, but the answer states that the root mean square speed depends...
Homework Statement
A turbine is receiving air from a combuster inside of an aircraft engine. At the inlet of the turbine I know that
T1 = 1273 K and P1 = 549 KPa, and the velocity of the air is essentially 0.
The turbine is assumed to be ideal, so its efficiency is exactly 1.
Also: R = 287...
We know that internal energy of ideal gas depends only on temperature.
Let's say we have 1 mole of ideal gas with pressure P1, volume V1 and temperature T. Let's call this the state 1. Equation of state for ideal gas applies: PV=RT.
Now if we expand (or compress gas) isothermally, gas will then...
Hi,
Could I please get some guidance on my approach and solution, for this particular problem.
Any assistance welcome.
1. Homework Statement
An ideal gas is compressed at a constant pressure of 1.3 atm from a volume of 20 L to 12 L. During this process it gives off 3.69 kJ of heat. What is...
Homework Statement
The problem is attached
Homework Equations
ΔEint=Q+W
W=-PΔV
The Attempt at a Solution
Attempted solution is in the attachment. The problem is I am not getting the same answer as the supposed correct answer.
Thank You,
Ethan
Homework Statement
We have
0.0008 Kmol of an ideal gas are expanded from V1 to V2 v2=3V1
process is reversible and T/V=Constant
if the work obtained by this expansion is 9.4 KJ find the initial temperature
R=8.314 KJ Kmol-1
Homework Equations
PV=nRT
possibly T/V = T/V
The Attempt at a...