In mathematics, a Lie group (pronounced "Lee") is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract, generic concept of multiplication and the taking of inverses (division). Combining these two ideas, one obtains a continuous group where points can be multiplied together, and their inverse can be taken. If, in addition, the multiplication and taking of inverses are defined to be smooth (differentiable), one obtains a Lie group.
Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the rotational symmetry in three dimensions (given by the special orthogonal group
SO
(
3
)
{\displaystyle {\text{SO}}(3)}
). Lie groups are widely used in many parts of modern mathematics and physics.
Lie groups were first found by studying matrix subgroups
G
{\displaystyle G}
contained in
GL
n
(
R
)
{\displaystyle {\text{GL}}_{n}(\mathbb {R} )}
or
GL
n
(
C
)
{\displaystyle {\text{GL}}_{n}(\mathbb {C} )}
, the groups of
n
×
n
{\displaystyle n\times n}
invertible matrices over
R
{\displaystyle \mathbb {R} }
or
C
{\displaystyle \mathbb {C} }
. These are now called the classical groups, as the concept has been extended far beyond these origins. Lie groups are named after Norwegian mathematician Sophus Lie (1842–1899), who laid the foundations of the theory of continuous transformation groups. Lie's original motivation for introducing Lie groups was to model the continuous symmetries of differential equations, in much the same way that finite groups are used in Galois theory to model the discrete symmetries of algebraic equations.
Hi all,
I wanted to study Lie groups and their connections with differential geometry. But i don't want to get involved with lots of 'deep physics'.
I am familiar with a little bit of group theory.
can somebody suggest the right introductory material like tutorial papers or books for such a...
Here is a nice question
I know that exponentiating elements of a Lie-Algebra gives you back an element of the Lie-Group. These Lie-algebra-elements generate the Lie-Group transformations. Like the Galilei-group, these Lie-groups are used in theoretical fysics as the great START, I mean they...
Source: Anderson, Principles of Relativity Physics
p. 13, prob. 1.4
"Reparametrize the rotation group by taking, as new infinitesimal parameters, ε1 = ε23, ε2 = ε31, and ε3 = ε12 and calculate the structure constants for these parameters."
My assumptions:
(1)
The εij mentioned in...