Optics Definition and 999 Threads

  1. M

    Fabry Perot Free Spectral Range

    Hi all, the question which I'd like to share is the following: if you look at the formal theory of any random optics book for FP interferometer you will get to the formula of the FSR (Free Spectral Range), defined as "The wavelength separation between adjacent transmission peaks" (Wikipedia)...
  2. andrewm94

    Career Options in Applied Physics

    Hello to all of you! This is my first post on this forum, though I have visited this site many times to learn from its wealth of information and insights. A bit about me, I just finished the second year of my undergraduate career and am looking forward to beginning my upper level physics...
  3. E

    Angular Spectrum Method and Fourier Transform

    Are the results of the Angular Spectrum Method and the Fourier Transform of a Fresnel Diffraction be different, or the same? Given the same distance between the input and output plane, and the same aperture.
  4. E

    What is the name of this equation? Seems to be from Optics

    I was given this equation: ##\frac{1}{\lambda f} e^{ikr^2f}##, where ##\lambda## is the wavelength of light and ##f## is the focal length of the lens. I was told that it is called the "lens phase", but I have no luck in finding it using Google. I suppose this is multiplied when a beam of...
  5. C

    Circular Aperture Diffraction, Angle of First Minimum

    Homework Statement A helium-neon laser ( ##\lambda =633nm##), is built with a glass tube of inside diameter 1.0mm. One mirror is partially transmitting to allow laser light out. From an optical perspective, the laser beam is a light wave that diffracts through a 1.0mm diameter circular...
  6. G

    Dichroic mirrors that reflect two wavelengths

    In fluorescence microscopy, dichroic mirrors reflect light under a critical wavelength (used to excite the sample) and transmit light over a critical wavelength (emission light from the sample). Are there mirrors that reflect two different wavelengths of light and transmit the rest? Essentially...
  7. E

    MATLAB Implementation of Fresnel Diffraction in MatLab

    I'm trying to simulate the Fresnel Diffraction in MatLab using the Fast Fourier Transform syntax. But I'm not getting really good diffraction patterns. Here is the code: %% Fourier Transform for G(p, q) g = layer.*exp(((1i*pi)/(lambda*z))*(r_obj)); G = fftshift(fft2(g)); %% Fourier Transform...
  8. E

    Computer Simulation of Fresnel Diffraction

    Considering this system (from Wikipedia), The Fresnel Diffraction at x, y, and z is ##E \left(x, y, z\right) = \frac{z}{i \lambda} \int \int^{+\infty}_{-\infty} E \left(x', y', 0\right) \frac{e^{ikr}}{r^2} dx' dy'## where ##r = \sqrt{\left(x - x'\right)^2 + \left(y - y'\right)^2 + z^2}##...
  9. Robsta

    Major and minor axes of elliptically polarized light

    Homework Statement Consider an elliptically polarized beam of light propagating along the z axis for which the E field components at a fixed position z are: Ex = E0cos(ωt) and Ey = E0cos(ωt +φ) Find the major and minor axes of the ellipse in terms of E0 and φ and sketch the ellipse in the...
  10. C

    Solve Fourier Optics Output with Fresnel Transform

    1. I have the following setting of free space than a lense and again free space i need to solve for the output field as in the figure attached. 3. i used the fresnel transform once and then multiplied the field with the exponential and then convolved all the field. still couldn't make it to the...
  11. Ornit

    Ion Assisted Deposition (coating technology)

    Hi all, When talking to some of our optics vendors, I got the impression that Ion Assisted Deposition (IAD) is standard. We use our optics at high power densities and we care about laser damage as well as adhesion and density of the coating (aka porosity, helps reduces sensitivity to humidity)...
  12. K

    How Does the Galileoscope's Optical Design Affect Its Viewing Capabilities?

    Homework Statement 2009 it was 400 years ago, Galileo Galilei (1564-1642) for the first time turned his home-built telescope to the sky, and for this reason is celebrated this year the International Year of Astronomy a group of astronomers, optical engineers and teachers developed a Galilean...
  13. W

    Optics - Imaging from focal plane

    Hi! Assume paraxial rays. If I have a lens with a focal length ##f## and I place an object at the focal length to the left of the lens, the image will be at infinity. Correct? But will it be imaged in infinity to the left or right of the lens? If I am looking into the lens from the right I...
  14. S

    Microscope magnification using Ray Optics

    Homework Statement Basically, derive the formula ## m = \frac{ 25 cm}{f_e} \frac{L}{f_o} ## using ray matrices. This just has variable tube length and assumes eye to object distance is 25 cm. Homework Equations Ray matrices: ## \left[ \begin{array}{cc} 1 & d \\ 0 & 1 \end{array} \right] ##...
  15. E

    How to know the shape of a specific location on Earth?

    How do you know the shape (land altitude, roughness, etc.) of a specific location on Earth through a satellite? For example, if a specific place is covered by clouds is there a way to know the shape of the ground at this specific point? I have read through the absorption spectra of the...
  16. A

    Simple Optics Problem (plane mirror and lens)

    Homework Statement A plane mirror is placed at the origin. A converging lens with a focal length of 5.00m is located at x=12.50m. A object is placed at x=22.5m Find the final location of the image in terms of its X coordinate & magnification. Homework Equations 1/q + 1/p = 1/f (lens)...
  17. W

    Geometric Optics: Find Fish Apparent Position & Length in Fishtank

    Homework Statement A fish 2cm long is floating in a spherical glass fishtank with radius 20cm. The glass is 0.8cm thick and has index of refraction n=1.56. The index of refraction of water is 1.33. Find the apparent position and length of the fish. Homework EquationsThe Attempt at a Solution I...
  18. M

    Focal length of lens at border of two liquids

    Homework Statement I need to find optical power (reciprocal focal length) of this system with thin lens Homework Equations I tried to solve this using spherical diopter equation n1/a+n2/b=(n2-n1)/R where a is object distance and b is image distance The Attempt at a Solution equation for...
  19. I

    Real World Applications of Optical Cavities: What Can They Be Used For?

    Are there any real world uses for optical cavities. Optical (or laser Cavities) description: where lasers continually bounce off two reflecting mirrors.
  20. Z

    Double Slit Diffraction:Finding Greatest Angle for Minimum

    I'm at wits end. I hate WileyPlus. Part A, B and C are correct. I cannot figure out what Part D is -- all of the answers I am getting are wrong. Homework Statement Homework EquationsThe Attempt at a Solution
  21. W

    Modeling Converging Spherical Waves in Optics

    Hi. A spherical wave ##e^{i(kr-\omega t)}## diverging from a single point ##(x=0,y=0,z=-z_0)## can be approximated as a parabolic wave in the paraxial case around the z-axis. I.e., ##k r = k \sqrt{x^2+y^2+z^2} \simeq k (z +\frac{x^2+y^2}{2z})##. OK, then let's say a lens is placed such that its...
  22. Qiao

    Fourier optics with concave (diverging) lenses

    Hey, I was wondering, since for a convex lens the Fourier transform of a fields is in their real focus plane. Is it for a concave lens that the Fourier transform of a field is in the virtual focus plane? I can't find any book or paper that talks about how concave lenses work in terms of...
  23. D

    Detecting Falling Objects with a LiDAR

    I am experimenting with a LiDAR system, one of my goals is to detect falling objects. The scanning frequency is 100Hz with an angular resolution of 1°. I have been able to detect an object if it is a certain size or greater moving horizontally but I'm not sure what I should focus on to make sure...
  24. Padrepapp

    Coupling Xe Arc Lamp into Fiber Bundle

    Hey, we are trying to couple the light of a 75 W Xe Arc Lamp (Hamamatsu L2194) into a 800um(0,8mm) diameter fiber bundle (7 fibers). Now we have 2 plano convex lenses (25mm diameter, 30mm EFL, edmund serial #45-364), the first for collimating the second for focusing onto the fiber. We are...
  25. henil

    Project for masters in applied optics

    i want to prepare a project in applied optics but i am to confused about what topics should i select.
  26. A

    How can I determine the properties of a thin lens using basic formulas?

    Homework Statement I've tried to attached the image of the diagram. If that isn't working please let me know.Height of incident marginal ray now 25. Assume a thin lens. Find: a. the effective focal length b. the power of the lens c. surface curvature for front and back surfaces (assume...
  27. T

    Light and Optics: Shoplifter's Distance and Height

    Homework Statement A shoplifter is spotted using a convex mirror, in which the image appears to be 22.0cm behind the mirror, which has a focal length of 24.0cm. HIs apparent height, in this image, is 14.0cm tall. A)How far away is the shoplifter from the mirror? B) How tall is the shoplifter...
  28. M

    Determining the focal length of a gradient index lens

    Homework Statement There are three subquestions in this question, all marked bold. Let's consider a gradient index lens of thickness ##d##, whose refractive index changes with the distance from the axis with the following formula $$ n(r) = n_1 + a r^2 $$. Determine the lens's focal length...
  29. S

    How to Obtain a Magnification of -2 from a Convex Lens?

    Homework Statement You wish to obtain a magnification of -2 from a convex lens of focal length f. The only possible solution is to: A) place a virtual object at a distance 2f/3 from the lens. B) place a virtual object at a distance 5f/3 from the lens. C) place a real object at a distance...
  30. L

    Optics cornu spiral and diffraction

    Hi, i am in second year of university and doing optics I have a questions in one ofmy assignment : Fresnel diffraction is observed behind a wire 0.37 mm thick, which is placed 2 m from the light source and 3 m from the observation screen. If the light of wavelength 630 nm is used, find, using...
  31. DrewHizzy

    Diverging and Converging lenses in a system

    Homework Statement A)Find the final position of the image (from the object, I assume?) B)Find the size of the final image of the object. Homework Equations 1/f = 1/do + 1/di The Attempt at a Solution 1) Solved first distance: 1/5 - 1/4 = 1/di --> 4/20 - 5/20, di = -20cm 2) Use di1 for do...
  32. J

    Ray Tracing - Optics - Bend light with circular lenses

    Hey guys first time poster. I have written a 2D ray tracer in Mathematica. It's very basic, all it does is use Snell's law to trace ray refraction and very basic absorption. The set up is a central absorbing circle surrounded by circular lenses. The central circle is a perfect absorber, so if a...
  33. ryanuser

    Fibre optics and multipath disspersion

    Hey I don't understand why multipath disspersion doesn't occur still when monochromatic lights are directed at a fibre obtic. (For example sending dozens of infrared waves at the same time). Wouldn't they still overlap and perhaps superpose?
  34. G

    Concentrating sunlight to accomplish projection (Art project)

    Hello! First of all I want to say that I am not a physicist, but an artist currently doing my master thesis. I have been trying to build a solar powered slide projector. It works very simple – I reflect sunlight through a slide and enlarge it with a lens. My problem was that I wanted more...
  35. M

    A constant part of a photo taken

    Homework Statement (56th Polish Olympiad in Physics, II stage) A photographer has a camera with a lens of focal ##f## with can be set to a value from the interval ##[f_{min}, f_{max}]##. The diameter of the diaphragm is ##d##. The photographer wants to make a photo of a friend so that the...
  36. Qiao

    Spatial Light Modulators and Fourier Optics

    Hi, I'm working with a Digital Micro-mirror Device type SLM and my goal is to convert my laser from a gaussian to flat-head intensity profile. And then the tricky part is to make the beam oscillate up and down on the camera using just the SLM. Apparently I was to naive to think that moving my...
  37. N

    Interpreting Seidel Aberration coefficients

    I am trying to model a simple system, but the ray-tracing does not seem to be consistent with the analysis of the system in terms of Seidel aberration values. Here's the system layout: When the system contains only the Eye model and the OL lens, it can be referred from the Seidel diagram that...
  38. W

    Understanding Telecentricity in Newtonian Telescopes

    Homework Statement See the image I uploaded. Homework Equations Paraxial approximations The Attempt at a Solution I think the image is formed after the ocular, and I understand the system is afocal. The magnification is also less than 1, but the angular magnification is >1. What I am stuck...
  39. W

    Telecentric entrance pupil - Optics

    Hi. As you guys know, an object-telecentric system (a system with constant magnification) has per definition an entrance pupil that is infinitely far away. One can construct such a system by taking a lens and placing an aperture stop (AS) at its focal point. My issue is that I am struggling to...
  40. J

    Optics question with radius of curvature

    Hi, I am a first time poster and I am completely lost with this question. Any help would be greatly appreciated Filling the space between a contact lens and the cornea is a small quantity of liquid of refractive index of 1.336. Assuming the refractive index of the lens material is 1.490 find...
  41. A

    Need some info about light heat amplified by lens

    It is known that a magnifing glass can start a fire, but I don't fully understand the phenomenon and I have the next questions: - Does the effect depend on the shape and the material of the lens you use? - Where can I find some details about heat produced by light or particulary on this...
  42. S

    How Does Snell's Law Help Calculate Distance Between Parallel Lines?

    I can't seem to find the proof for the distance between the two parallel lines. Homework Equations : Snells law: μ1sinθ1=μ2sinθ2 Sin (A+B)= sinAcosB + sinBcosA[/B]The Attempt at a Solution : tried using the parallel lines to get a result in terms of the initial angle of incidence ϑ, as the...
  43. A

    The smallest angle flashlight beam can make with horizontal

    Homework Statement At the aquarium where you work, a fish has gone missing in a 10.5m -deep, 9.45m -diameter cylindrical tank. You shine a flashlight in from the top edge of the tank, hoping to see if the missing fish is on the bottom. What’s the smallest angle your flashlight beam can make...
  44. Fallen-S36

    Bending the Rules (Gamma ray lenses)

    http://news.sciencemag.org/sites/default/files/styles/thumb_article_l/public/article_images/sn-gammarays.jpg?itok=vYTMw8My Researchers at Institut Laue–Langevin have found a way to bend gamma rays. Gamma ray lenses, which theory had suggested were impossible, could be made from heavy elements...
  45. M

    Why is the general form of the wave equation a second order partial derivative?

    When I deduct the the general form of wave equation, I noticed it has a second order partial derivative form. I am wondering why wave equation has a second order partial derivative form nor a first order partial derivative form?
  46. R

    Divergine Lens Embedded within Converging Lens

    Homework Statement A thin converging lens made of glass (##n_g=1.55##) happens to have an inclusion of water (##n_w=1.33##) at the center. The lens surfaces have radii of curvature ##R_{out} = r_1=r_2=10m##, and the water inclusion has the shape of a diverging lens with radii of curvature...
  47. B

    Solve Depth of Pool w/ Snell's Law

    Homework Statement A stone lies to the very edge at the bottom of a pool. The pool is filled with water to the top. The person standing three meters away from the pool is 1 meter tall and he can see exactly the half of the stone. Calculate the depth of the pool.Homework Equations Snell's law...
  48. S

    Can a real image be formed by a virtual image?

    That is, take the virtual image as the object for a second lens?
  49. AdityaDev

    Changing electric field and refractive index

    I am learning sky wave propagation and in my book, a relation between refractive index, dielectric constant and electro field strength is given. \mu=\mu_0\sqrt{1-\frac{Ne^2}{\epsilon_0m\omega^2}} Is this a form of Kerr opto-electric effect? How do you get this expression? If you think I cannot...
  50. G

    Unclear geometry in optics problem

    Homework Statement [/B] A parallel quadratic slab of glass (n = 1.55 and thickness d = 2 cm, L = 21 cm) rests on a large slab of glass (n = 1.55). To prevent the optical contact weld forming between the two polished surfaces, a small teflon ball (D = 1 cm) is inserted between the slabs on one...
Back
Top