Not sure if I answered this question right
I took my clockwise moments as +ve and counter-clockwise moments as -ve
Any help would be much appreciated! Thanks
I am looking to understand how isoelectric point is defined and calculated. I read the paper "Isoelectric Point Calculator" (Kozlowski 2016) which gives the definition found everywhere 'isoelectric point pI is the pH value at which the net charge of a macromolecule is zero, and therefore its...
I need some help resolving the follow problem. I really don't know where to put the "twice as large as the resultant force on Q3" in order to build an equation.
Thank you !
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
Points A ,B and C have coordinates A(1,3) B(5,1) and C(2,-8).
point D is such that the vector AD = Vector BC + (2x) vector AB + (3y) vectorAC = vector AB + (2x) vectorAC + (3y) vector BC
find coordinates of D
F = qE
ma = (2*10^-6) * (λ / (2pi*r*ε0) )
ma = (2*10^-6) * (4*10^-6 / (2pi*4*ε0) ) => I am not certain what to put for r ( But I sub in 4 because dist is 4)
a = ( (2*10^-6) * (4*10^-6 / (2pi*4*ε0) ) )/ 0.1
a = 0.35950
v^2 = U^2 + 2 a s
v = 0
u^2 = -2 a s => Can't sqrt negative so...
It was a long time ago I did these kind of problems so I’m a bit rusty. The only thing I can think of is divide it up to two parts one x and one y.
In y the acceleration is sin(a)*9.82? Then put that in the equation and solve for t.
In x the there is no acceleration so the formula is x=V0*t, I...
I have the following function
$$f^{(0)}\left(x\right)=f\left(x\right)=e^{x}$$
And want to approximate it using Taylor at the point ##\frac{1}{\sqrt e} ##
I also want to decide (without calculator)whether the error in the approximation is smaller than ##\frac{1}{25} ##
The Taylor polynomial is...
I did (0.9-0.1)/(1.5-0.5) = 0.8/1 --> 0.8 m/s^2
This doesn't look right to me. Is this actually correct or do I need to solve the problem a different way?
Everywhere I look online I see the formula for the magnetic field of a uniformly moving charge is,
$$\frac{\mu_0 q \vec v \times \vec r}{4\pi r^3}$$
but when I calculate it by transforming the electrostatic field (taking the motion along x) I get,
$$\frac{\gamma \mu_0 q \vec v \times \vec...
G'day.
I have a problem with my statics work, i understand its probably quite simple but I am having trouble in my understanding.
Essentially problems make more sense to me by using the component method, although in saying that i understand this problem would be quite a lot more simple were i to...
Attached is problem 23.03 from Halliday and Resnick.
We have a sphere of uniform negative charge Q = -16e and radius R = 10cm. at the center of the sphere is a positively charged particle with charge q = +5e. We are supposed to use Gauss' law to find the magnitude of the electric field at...
Find point d on the line of r(t)=(0,0,0)+(−1,1,1)t which make the triangular pyramid abcd has the volume of 4 unit cube when a(0,0,0),b(1,0,1),c(0,1,0) are the points on the plane of −x+z=0.
The graph's turning point of a quadratic function f(x)=ax^2+bx+c is over the X-axis. If the coordinate of the turning point is (p, q) and a > 0, the correct statement is ...
A. c is less than zero
B. c is more than zero
C. q is less than zero
D. q equals zero
Since the point (p, q) is over the...
The professor posted a take-home problem for us to solve for extra credit.
Extra credit problem:
Using nothing but pen, paper and a ham, calculate the boiling point of 1:1:1 solution of benzene, pentane, and ethylene in a pressurized tank filled with neon at 6 atm pressure. The Answer must be...
I tried finding the potential due to a small element dM of the ring let's say dV, the summation of dV for all the dM's of the ring will give the potential at the point P, but since every element dM of the ring is at a different distance from the point P I am unable to come up with a differential...
Dear Ladys and Gentlemans,
I want to measure the sheet resistance R_square on a printed product.
My measuring equipment consists a SMU to supply and measure and a four point Probe by Jandel.
As output size I get the electrical resistance R (basically the measured Voltage U divided by the supply...
Let point charge q be at y=r. Let there be an infinite conducting plane along the x-axis and z-axis that is neutrally charged. In this case, the method of mirror charges can be used. The plane is replaced by a point charge -q at y=-r. The electric field for y > 0 is the same in both cases...
Hey there,
I've been recently been going back over the basics of GR, differential geometry in particular. I was watching one of Susskind's lectures and did not understand the argument made here (26:33 - 35:40).
In short, the argument goes as follows (I think): we have some generic metric ##{ g...
I think that we can say that PPR = α*PRPS
where PR and PS are the points where occurs the intersection on the line R and S.
Obs: line r and s are found by knowing that the straight line intersection of two planes are
n1 X n2 [cross product]
Lr = (0,1,-2) + y(-1,1,1)
Ls = (0,1,-1) + u(1,2,1)...
If the function is not differentiable at point. Can we consider this point is critical point to the function?
f(x) = (x-3)^2 when x>0
= (x+3)^2 when x<0
he asked for critical points in the closed interval -2, 2
I ask this with more of a software background than an engineering background, but here I go anyway.
Big data is arguably the cultural motif or monograph of the information age. Trends involve immersing ourselves in media of various sorts and processing them at exceptional rates. Of course...
I am not sure I understand the question. I imagine there is a horizontal table and all the diagrams are the top-view of the table.
The question states that "A particle moves from P1 to P2 without acceleration along five different paths". In the first picture, I think the path is in the shape of...
In de Sitter-Schwarzschild spacetime things close to the black hole are falling towards it whereas in greater distance they are receding. So there should be a certain (unstable) ##r##-coordinate, where things are static. The de Sitter-Schwarzschild metric has according to Wikipedia...
Wikipedia defines the derivative of a scalar field, at a point, as the cotangent vector of the field at that point.
In particular;
The gradient is closely related to the derivative, but it is not itself a derivative: the value of the gradient at a point is a tangent vector – a vector at each...
However when there is a binary point where do I start grouping from? Is the rightmost bit considered the least significant bit even then?
The other possibility is to begin grouping from the least significant bit for the integral part and then separately begin grouping from the leftmost digit...
Hello,
I am looking for some help. I have completed the question below. I will show my answers.
My answer:
I believe this to be correct. If it is not would appreciate someone letting me know so i can correct.
Now i am attempting this question:
Could anyone help, or point me in the...
Summary:: What is the force N which acts on a support point at the moment just after system is released?
[Thread moved from the technical forums, so no Homework Template is shown]
A light bar with m1 and m2 masses (m1≠m2) at the ends placed on the support point (in the middle of the bar)...
Find the equation of the curve that passes through the point $(1,2)$ and has a slope of $(3+\dfrac{1}{x})y$ at any point $(x,y)$ on the curve.
ok this is weird I woild assume the curve would be an parabola and an IVP soluiton...
A simply-supported steel beam with a vertical point force P is shown in
Fig. 2(a). A cross-section of the beam, which is composed of two identical C-shaped
members bolted back-to-back, is shown in Fig. 2(b). Both C-shaped members have a
uniform thickness of 1 cm. Pairs of bolts are located at a...
My Attempt :We need to maximize
## D=\sqrt{x^2+(y+2)^2} ##
subject to the constraint
##4x^2 + 5y^2 = 20##.
From the constraint equation, we can write
##x^2=\frac{20-5y^2}{4}##
Using this in the formula for distance,
##D=\sqrt{\frac{20-5y^2}{4}+(y+2)^2}##
Differentiating this wrt y, and...
Hi all,
I have recently faced some problem about distances between two curves, and (re?)"discovered" an interesting point that I would like to share with you.
In the following, we consider a function of two variables ##f(x,y)##, but it should be clear that the definitions and the result is...
Hi all,
I was looking for help with obtaining deflection at end of a cantilever beam with point load at end as well as point mass at the same location. I believe it would be exactly same. Is this correct? That is, I think just adding point mass at the cantilever's end wouldn't change the...
I have 2 quadratic functions and I am interested in their root in the specific range. I use quadratic equation to get their roots and what I find that if their any real solution exist for both or any of the function that lie in it designated specific range, then the roots are maximum or minimum...
Summary:: Just a simple 3d rigid dynamics question which I am trying to solve by placing coordinat system differently from original solution.Everything looks ok but results are different.
Mod note: Post moved from technical section.
Thats my question.As you see coordinate system was located...
Dear everyone,
An airplane flies 470 miles from point $A$ to point $B$ with a bearing of 25 degrees. It then flies from 250 miles from point $B$ to point $C$ with a bearing of 40 degrees. Find the distance and the bearing from A to point C.
Work
I understand that I need to use law of...
I thought the right choice was d). But when it comes to the solutions, it is b) and I don't understand why.
My reasoning would be: the potential at a point is the work that the electric field does to transport a charge from infinity to that point, so if the field is zero, it does no work and...
I am unsure how to go about this. I tried following the suggestion blindly and end up with with some cumbersome terms that are not the answer. From what I understand the derivative at each point would equal to T?
Answer: I just can seem to get to this. I think I'm there but can't get it in...
Here's a diagram of the problem. There are 3 possible solutions: 163 in-lb clockwise, 163 in-lb counterclockwise, 82.7 clockwise or none of them. After attempting the problem the closest I got to was 82.7 but that was wrong so I'm still stuck.
Below is the work I've attempted. I used 2 PE b'c there were 2 point charges, and only one KE b'c only the proton is moving. The final equation in case it's hard to see is V(esc) = sqrt (4kQq / mr).
I'm not sure if I did it right. Did I set up this equation right? and I am also not sure what...
I've attached a figure I've made; I know I'm to assume the Earth is a perfect sphere in this case. Assuming the 103 degrees is measured as latitude, I've calculated the distance in kilometers (Xp in the second equation above) to be 1.1453e4 km. I know I need u = p at the turning point, but not...
Using superposition and "breaking up" the vectors into three components ax, ay, az on points should solve the task.
For Q1 there is no effect on x-axis.
On the y-axis the distance from Q1 to origin is 2. Using coulombs law will give us -> (-Q/4) * k , where k is the constant 1/(4*pi*e0).
On...