Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Classical physics, the description of physics that existed before the theory of relativity and quantum mechanics, describes many aspects of nature at an ordinary (macroscopic) scale, while quantum mechanics explains the aspects of nature at small (atomic and subatomic) scales, for which classical mechanics is insufficient. Most theories in classical physics can be derived from quantum mechanics as an approximation valid at large (macroscopic) scale.Quantum mechanics differs from classical physics in that energy, momentum, angular momentum, and other quantities of a bound system are restricted to discrete values (quantization), objects have characteristics of both particles and waves (wave-particle duality), and there are limits to how accurately the value of a physical quantity can be predicted prior to its measurement, given a complete set of initial conditions (the uncertainty principle).
Quantum mechanics arose gradually from theories to explain observations which could not be reconciled with classical physics, such as Max Planck's solution in 1900 to the black-body radiation problem, and the correspondence between energy and frequency in Albert Einstein's 1905 paper which explained the photoelectric effect. These early attempts to understand microscopic phenomena, now known as the "old quantum theory", led to the full development of quantum mechanics in the mid-1920s by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born and others. The modern theory is formulated in various specially developed mathematical formalisms. In one of them, a mathematical entity called the wave function provides information, in the form of probability amplitudes, about what measurements of a particle's energy, momentum, and other physical properties may yield.
Forgive me if this question is a bit amateurish but i am no physicist. I know in general terms that GR and QM aren't compatible with one another, but my question is...Do they even need to be? can it not be a handoff scenario? why can't GR govern what it is supposed to govern and QM govern what...
Homework Statement
Homework EquationsThe Attempt at a Solution
I tried to solve (a), but i don't know which approach is right ((1) or (2)) and how to solve (b).[/B]
Is there a possibility that none of the current interpretations of QM are right?
Or is the current interpretations all that there will be on the table?
Heads up, I only recently got into quantum mechanics and don't feel like I got a solid grasp on the material yet.
1. Homework Statement
Given is the wave function of a free particle in one dimension:
\begin{equation}
\psi(x,0) = \left( \frac{2}{\pi a^2} \right)^{1/4} e^{i k_0 x} e^{-x^2/a^2}...
Hey!
I posted this thread hoping that there are experts about quantum physics here. Please if you do not know a lot about the subject, don't answer this question:
First things first, to be clear: I’m NOT building a quantum suicide machine and I’m NOT trying to kill myself. I’m just curious...
Hello! I am trying to write a program that solves the Schrodinger Equation for a particle in an infinite square well. I did a lot of research regarding the methods that could be used to accomplish this. I am writing this program in Matlab. The method I am using is called the Shooting Method. In...
I just came across this book and it seems to be very well written http://www.worldscientific.com/worldscibooks/10.1142/8534
Here is the amazon link https://www.amazon.com/gp/product/9814412902/?tag=pfamazon01-20
for self-learners, it also has a solution manual for sale in amazon...
Hi all, I'm trying to compute the solutions to a general case for a Schroedinger equation with a radial potential but I'm stuck on a rather small detail that I'm not sure about. It's well known that I can perform the change of variables to spherical coordinates and express the radial part of the...
Homework Statement
Find the first-order corrections to energy and the wavefunction, for a 1D harmonic oscillator which is linearly perturbed by ##H'=ax##.
Homework Equations
First-order correction to the energy is given by, ##E^{(1)}=\langle n|H'|n\rangle##, while first-order correction to the...
Has anyone read the 7-book series http://amzn.to/2lwgn66 by Andrew Thomas?
Just wondering what you think of his conjectures / speculations at the final sections of each book, i.e. on the link between relativity and quantum mechanics, equation of the universe, etc...
I like that he...
Hey guys,
Hope all is well. I'm trying to get my head round some of the Quantum Mechanics of spin. I fully understand why the Pauli equation acts on a two component spinor wavefunction, where I'm a little confused is why the Dirac equation then acts on a 4 component spinor...
I'm trying to prove that the wave function of Hydrogen for the fundamental state is normalized:
$$ \Psi_{1s}(r)=\frac{1}{\sqrt{\pi a^3}}e^{-\frac{r}{a}} $$
What I tried is this:
$$ I= \int_{-\infty}^{\infty} | \Psi^2(x) | dx = 1$$
$$ \int_{-\infty}^{\infty} \frac{1}{\pi...
Hi all,
I have a question about the quantum nature of ionic bonds.
I know some ideas about molecular bonding which can combine two ground state of H atom
to get a bonding state and an anti-bonding state which in the case of H2 molecules it correspond to the covalent bonding (sharing of...
For someone at my level, the following article is extremely informative. I would like to post a link to it. But first here are a few quotes from the article...
Here is his definition of wave-particle duality...
And here is his statement on Cognitive Dissonance...
"Quantum Mechanics and the...
I'm pretty new to quantum, so I'm pretty sure I'm missing something basic here. I've got a 4x4 Hamiltonian with eigenkets $$\psi_{U} = 1/(\sqrt 2) (\psi_{1up} \pm \psi_{2up})$$ and $$\psi_{D} = 1/(\sqrt 2) (\psi_{1down} \pm \psi_{2down})$$ The only difference between the two states is the spin...
Hello everybody! I am excited to be part of this forum. It's the first time for me. I am 41, from France and with my sons (9, 7 and 6) we love physics. I have studied economics and discovered my interest for physics only a few years ago. I try to learn things by myself with videos from You tube...
I was reading Bransden's Quantum Mechanics 2nd edition, chapter 2 page 61. There,it says "It should be noted that since E =hv (v for nu), the absolute value of the frequency has no physical significance in Quantum mechanics..."
Why is that? Isn't this a contradiction?
Homework Statement
Consider a particle with angular momentum l=1. Write down the matrix representation for the operators L_x,\,L_y,\,L_z,for this particle. Let the Hamiltonian of this particle be H = aL\cdot L-gL_z,\,g>0.Find its energy values and eigenstates. At time t=0,we make a measurement...
Hi I have some questions about operator and experimental action
1, For each experimental action(no matter how trivial or complex), can they ALWAYS be described by some corresponded operator? how to proof? For example, adding some energy to excit a particle can be described in operator language...
in an attempt to get a better understanding of what happens during a measurement i have constructed a gedanken-experiment with two photon interference that regardless of its outcome seems to contradict quantum mechanics in one way or another and i was hoping to get a clarification here where i...
Homework Statement
A Hydrogen atom is interacting with an EM plane wave with vector potential
$$\bar A(r,t)=A_0\hat e e^{i(\bar k \cdot \bar r -\omega t)} + c.c.$$
The perurbation to the Hamiltonian can be written considering the proton and electron separately as...
This was off-topic in the thread on vacuum fluctuations where the quote appeared, so I opened a new one.
I didn't know the paper before, so first need to read it...
Homework Statement
Using the equations given, show that the wave function for a particle in the periodic delta function potential can be written in the form
##\psi (x) = C[\sin(kx) + e^{-iKa}\sin k(a-x)], \quad 0 \leq x \leq a##
Homework Equations
Given equations:
##\psi (x) =A\sin(kx) +...
From Frank Wilczek's book 'A Beautiful Question'
'Quantum mechanics shows how the poverty of energy imposes structure' P196
Is he saying the poverty of energy imposes structure in the energy of a quantum system or structure in matter? Or both? If we look at an atom it has ordered structure in...
Hello!
I will be attending a course on condensed matter physics with emphasis on geometrical phases and I was wondering if the are any good books on gauge transformations, gauge symmetry and geometrical phases that you know of.
Thanks in advance!
Homework Statement
A particle of mass m, is in an infinite square well of width L, V(x)=0 for 0<x<L, and V(x)=∞, elsewhere.
At time t=0,Ψ(x,0) = C[((1+i)/2)*√(2/L)*sin(πx/L) + (1/√L)*sin(2πx/L) in, 0<x<L
a) Find C
b) Find Ψ(x,t)
c) Find <E> as a function of t.
d) Find the probability as a...
Hello, I will be attending an undergraduate course called "Theoretical Physics" and I want to borrow some books from the library that cover the material of this course. I would appreciate any suggestions.
The syllabus of the course is the following(I will be translating so I am sorry If...
I am an engineering student with an interest in quantum mechanics : However, I really need to make a flowchart so I can understand where to proceed
What I know:
Math -
Multivariable calculus, Differential Equations including laplace and Fourier series, and Basic Linear Algebra (Spaces...
Hi all,
I'm reading a paragraph from "Geometric Algebra for Physicists" - Chris Doran, Anthony Lasenby. I'm quite interested in applying GA to QM but I've got to a stage where I am not following part of the chapter and am wondering if someone can shed a little light for me.
The part...
Homework Statement
An electron in the Coulomb Field of the proton is in the state:
|ψ> = (4/5)|1, 0, 0> + (3i/5)|2, 1, 1> with |n, l, m> as the quantum numbers defining the state
a) What is <E> for this state? What are <L2> and <Lz>?
b) What is |ψ(t)>? Which expectation values...
I was sitting at my bed when I suddenly have an idea.
The unification of electromagnetism and gravity was made with General Relativity. For this to happen, one just need to write the energy due to electromagnetic field in "differential geometry" form, through the Electromagnetic tensor, in a...
Homework Statement
Using Hund's rules, find the ground state L, S and J of the following atoms: (a) fluorine, (b) magnesium, and (c) titanium.
Homework Equations
J = L + S
The Attempt at a Solution
I'm having trouble understanding what L, S and J mean on a basic level. I read the textbook...
Hello all!
You'll see, I am self studying physics, and have already finished with Kleppner - Kolenkow mechanics (complemented with Morin) and Griffiths electrodynamics.
Now I think I am prepared for QM, but I do not know which textbook is better for me. I have reduced my options to Griffiths...
Homework Statement
Here is a copy of the pdf problem set {https://drive.google.com/open?id=0BwiADXXgAYUHOTNrZm16NHlibUU} the problem in question is problem number 1 which asks you to prove the orthonormality of the spherical Harmonics Y_1,1 and Y_2,1.
Homework Equations
Y_1,1 =...
Homework Statement
This is a (long) multi-part question working through the various stages of solving the radial Schrodinger equation and as such it would be impractical to type it all out here but I will upload the pdf (https://drive.google.com/open?id=0BwiADXXgAYUHOTNrZm16NHlibUU) of the...
Homework Statement
Essentially we are describing the ODE for the radial function in quantum mechanics and in the derivation a substitution of u(r) = rR(r) is made, the problem then asks you to show that {(1/r^2)(d/dr(r^2(dR/dr))) = 1/r(d^(2)u/dr^2)
Homework Equations
The substitution: u(r) =...
Consider a cat in a box in a room. The box also contains some radioactive isotope. A geiger counter detects if the atom decays, and if it does, it sends a signal to some sort of computer, which causes a hammer to fall and smash open a bottle of poisonous gas. So, if the atom decays, the cat is...
Note this isn't actually a homework problem, I am working through my textbook making sure I understand the derivation of certain equations and have become stuck on one part of a derivation.
1. Homework Statement
I am working through my text (Quantum Mechanics 2nd Edition by B.H Bransden & C.J...
Homework Statement
I'm currently working on a homework set for my intermediate QM class and for some reason I keep drawing a blank as to what to do on the first problem. I'm given three potentials, V(x), the first is of the form {A+Bexp(-Cx^2)}, the others I'll leave out. I'm asked to draw the...
I flicker an LED on and off at a rate on the order of hundreds of kHz. The light, even though it is sent in pulses, still has its own frequency, correct? The frequency at which I turn the light on and off is not related to the frequency of the photons. Is this correct?
Homework Statement
Show the mean position and momentum of a particle in a QHO in the state ψγ to be:
<x> = sqrt(2ħ/mω) Re(γ)
<p> = sqrt (2ħmω) Im(γ)
Homework Equations
##\psi_{\gamma} (x) = Dexp((-\frac{mw(x-<x>)^2}{2\hbar})+\frac{i<p>(x-<x>)}{ħ})##The Attempt at a Solution
I put ψγ into...