In balanced homodyne detection, it is claimed that one can do state tomography. I understand most of the derivation except one part. Here is a figure describing homodyne detection.
the operator that is being measured is
$$ R=N_{1}-N_{2}=a^{\dagger} b+b^{\dagger} a $$.
taking the mode b to be...
I am not an expert in quantum theory. I want to carry out some parameter estimation on a set of data I have. I have a model for the data with the parameter(s) of interest as variable(s).
The data available is sporadic, meaning non-statistical or techniques involving no prior knowledge on the...
I have been working on a relatively simple problem. Just take a quantum wave function for which a physical requirement is that an arbitrary displacement of x or an arbitrary shift of t should not alter the character of the wave, and I want to find the state function solution. A possible guess...
Usually we hear about people working on a theory of quantum gravity, in order to avoid the singularity in the center of a black hole for example. But what if it's the other way around to some extent as well? What if it's gravity keeping quantum objects from doing their greatest reality-defying...
Summary:: Looking for articles/books to prepare myself for the course: Quantum computation with superconducting qubits
Hello everyone. I am about to take a course in Quantum computation with superconducting qubits and I am searching for material to prepare it. I took a first course on that...
Hi everyone,
I've been studying about semiconductor heterostructures and in particular quantum dots. I was wondering, why is there a need to have a "capping" layer above the layer where the quantum dots are formed within a sample?
Thanks in advance!
I want to learn about Quantum Computing (QC). I am familiar with Quantum Mechanics. So far I have found two types of literature: (1.) Introductions to QC for the layman, and (2) Literature for people who are already knowledgeable about the field. Can someone recommend a mid-level source along...
So for this question I just want to make sure that
1. Bohr model is that F_coulomb = F_centripetal? and then get w(r) is called determind?
2. for (b) calculate the frequency, should I use Rydberg formula or what?
I have read about several approcahes to bypass some classical restrictions to quantum facts such as the electron being in a torus-like shape to avoid ,the greater than speed of light, rotation paradox . Could you recommend websites , sources or books that give good classical analogy to quantum...
Hello,
I was wondering if it was possible to define good quantum numbers in solid state physics or chemistry when systems posses a discrete cylindrical symmetry Cnv. I know that in terms of angular momentum, L and L_z will be good quantum numbers for spherical symmetry, then only L_z is a good...
To solve a particle on a sphere problem in quantum mechanics we get the below equation :##\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=-A \Theta(\theta) ##
To solve this differential equation, we...
Hello there, I am having trouble understanding what parts b-d of the question are asking. By solving the Schrodinger equation I got the following for the Landau Level energies:
$$E_{n,k} = \hbar \omega_H(n+\frac 12)+\frac {\hbar^2k^2}{2m}\frac{\omega^2}{\omega_H^2}$$
Where ##\omega_H =...
In quantum field theory, we have the following expansion on a scalar field (I follow the convention of Schwarz's book)
$$\phi(\vec{x},t)=\int d^3 p \frac{a_p exp(-ip_\mu x^\mu)+a_p^{\dagger}exp(ip_\mu x^\mu)}{(2\pi)^3 \sqrt{2\omega_p}} \quad p^{\mu}=(\omega_p,\vec{p})$$
With commutation relation...
Hello there, I am trying to solve the above and I'm thinking that the solutions will be Hermite polynomials multiplied by a decaying exponential, much like the standard harmonic oscillator problem. The new Hamiltonian would be like so:
$$H = - \frac \hbar {2m} \frac {d^2}{dx^2}\psi + \frac...
A while ago I started writing a quantum computer simulator in order to learn more about quantum computing. It certainly has helped me.
The simulator is written in Python and the development was done on a Raspberry Pi 4. It has also been tested on a pc.
In order to see it do something useful I...
As my current studies have proven conservation of energy is a universal law. How is it possible for two entangled particles to be equally or similarly affected when a force or energy is applied to a single member of the entangled pair? The production of such a pair would be invaluable to...
Let ##|l,m\rangle## be a simultaneous eigenstate of operators ##L^2## and ##L_z## and we want to calculate ##\langle l,m|cos(\theta)|l,m'\rangle## where ##\theta## is the angle ##[0,\pi]##. It is true that in general ##\langle l,m|cos(\theta)|l,m'\rangle=0## ##(1)## for the same ##l## even if...
Hey everyone,
My question is simple. Has quantum vacuum information ? And can we measure it with Shannon Entropy and the other ways. By the way I just started to learn english so ı have any grammer mistake please tell me. I know this is out of subject but thank you.
https://www.bbc.com/news/science-environment-60708711
Scientists claim hairy black holes explain Hawking paradox
https://arxiv.org/abs/2112.05171
Quantum Hair and Black Hole Information
Xavier Calmet, Stephen D.H. Hsu
It has been shown that the quantum state of the graviton field outside a...
This problem had me take the taylor series of the Morse Potential,
until I got the first non zero term.
My result was U(x)=Aα2(x-x0)2.
I know to find the quantum number I can use En=(n+1/2)ℏω and I know I can relate that to the potential energy of a harmonic oscillator, 1/2kx2. So if this...
Hi Pfs
I read this answer in
https://quantumcomputing.stackexchange.com/questions/136/if-all-quantum-gates-must-be-unitary-what-about-measurement
Quantum measurements are special cases of quantum channels (CPTP cards). Stinespring dilation states that any quantum channel is realized by...
(I have to write a 1500 word essay briefly explaining quantum magnetism. But i am having a hard time structuring my essay as I need to select what is crucial and what is not since 1500 words is not a lot.
is there anyone with any input for me? Ideas, recommendations, sources anything is...
The emission spectrum or resonance fluorescence for a quantum dot, atom or defect center are discussed in many quantum optics textbook, for example see "Quantum Optics" by Marlan O. Scully and M. Suhail Zubairy Chapter 10 , "Quantum Optics" by D. F. Walls and Gerard J. Milburn Chapter 10 and...
We know that both momentum and position can not be known precisely simultaneously. The more precisely momentum is known means position is more uncertain. In fact, as I understand quantum mechanics, position probability never extends to 0% anywhere in the universe (except at infinity) for any...
In non relativistic quantum mechanics, the expectation value of an operator ##\hat{O}## in state ##\psi## is defined as $$<\psi |\hat{O}|\psi>=\int\psi^* \hat{O} \psi dx$$.
Since the scalar product in relativistic quantum has been altered into $$|\psi|^2=i\int\left(\psi^*\frac{\partial...
Hello, I am currently studying about entanglement on spin-1/2 chains and I was able to find some information about the mathematical point of view of concurrence but I can't understand the physical meaning of it . Can somebody help me, please?
Hi, has anyone tried to build "quantum GR", using the expectation value of |Psi(x)> as a "quantum ruler" and |Psi(t)> as a "quantum clock" to build up the idea of a "quantum metric"?
My article has been published in Entropy .
Abstract:
Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a gauge transformation. The author showed recently that one real function is also enough to describe matter in the Dirac equation in an arbitrary...
I am trying to learn about quantum chemistry for the purpose of understanding electronic structures of nanomaterials, or perhaps more generally some theoretical computational approaches to understanding interactions of nanomaterials/small molecules and high energy (keV to MeV) radiation. I'm...
As of today, there are plenty of time machine mathematical models based on general relativity theory (warp drives, wormholes), but few ones based on quantum physics. However, back in 2010, Seth Lloyd wrote: "quantum mechanics supports a variety of counter-intuitive phenomena which might allow...
I'm sure most will be familiar with the well-known ball and cup trick. The dynamics of the game itself are unimportant, we just need to have the image of 5 cups with a single ball being revealed when the relevant cup is lifted.
The Set-up
Imagine a machine which has a conveyor belt coming out...
I heard something today about the "informational interpretation" of quantum mechanics and a phrase used was "it from bit." Is there actually such a thing? What does it mean, and how is it distinguished from other interpretations like MWI or Copenhagen?
hello: I don’t know where to post this and I think this is as good a place as any here.
question: does quantum entanglement explain how we are?
I am having trouble Even trying to express the question above. But, I just viewed PBS space-time series 6 episode eight: “how do quantum states...
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.040403
In QM, I was taught that the imaginary unit ##i## in wave functions is merely a mathematical tool. It has no physical meaning. We can always take the real part of the complex wave functions. Therefore, there should be some...
* The general formula for the magnetic moment of a charge configuration is defined as ##\vec{\mu} = \frac{1}{2} \int \vec{r} \times \vec{J} \,d^3r##* For an electron it's said that the correct equation relating it's spin and magnetic moment is is
##\vec{\mu} =g\frac{q}{2m}\vec{S}##
* It's...
Physicists have proposed linking a global network of cesium clocks in a phase-coherent entangled state, for example in the article A Quantum Network of Clocks (arXiv:131045v1). My audience would like to know how better synchronization or more accurate timekeeping would lead to advances in our...
in classical physics, when a charged particle oscillates, it emits an electromagnetic wave, and the frequency of the wave depends on the frequency with which the particle oscillates.
But in quantum physics, when an excited atom emits a photon, the energy of the photon depends on the magnitude of...
I work in IT and am a layman in the quantum world. I have obviously misunderstood something in my amateur reading of quantum, but if someone could explain my mistake in the above scenario it might be very insightful for me! Forgive me if the terminology is not correct - or if indeed lay folks'...
Under several historical experiments, measurement back-action has exhibited the ability the suppress a system's transitions to other states, especially when measurements are taken at a high frequency in time. This phenomena has become known as the Quantum Zeno Effect. In short, a quantum...
Hi Fellas! My first post after a long hiatus from forums. Feeling nostalgia (this is the place where it all began, my fuel for quantum fascination so to speak).
I am revisiting the mathematical formulation of quantum mechanics with the dimensional (MLT) perspective. I want to understand what...
I was just wondering how much work is being done in the field of quantum gravity nowdays. Is there still a huge volume of research published on the topic? Are we closer to a "solution" nowdays than we were a few years ago? And also, what exactly would constitute a solution to such problem?
I tried to find states in direct method using ##\frac{E}{E_0}=\:nx^2+ny^2+nz^2## and ##100\:<nx^2+ny^2+nz^2\:<\:136##
But it was too long, found it using phi approximation there are around 300 energy states, and Python find around 271 states using direct method but I need manual or recursive...
Hello everyone,
I wanted some help deciding which elective to choose. I am a junior and for my next semester I have the option to pick either Differential Geometry-I or Quantum Information. I am confused which one to choose. We will be doing QMII as a compulsory course next semester and I have...
Summary:: I am in the highest level Quantum class at my university- technically considered a grad class. I am an undergrad and need advice on just how to learn it. What study tips? Good Youtubers? Physical simulations? Anything that helped you in quantum mechanics.
Hello! I am an undergrad...