Random variables Definition and 351 Threads

  1. P

    Is |Z| a Positive Normal Distribution?

    Homework Statement Let \psi(x) = 2\phi(x) - 1. The function \psi is called the positive normal distribution. Prove that if Z is standard normal, then |Z| is positive normal. Homework Equations The Attempt at a Solution I am not really sure where to begin with this. Can anyone...
  2. P

    PDF of function of 3 continuous, uniform random variables?

    Hi. The question is: Given X, Y and Z are all continuous, independant random variables uniformly distributed on (0,1), prove that (XY)^Z is also uniformly distributed on (0,1). I worked out the pdf of XY=W. I think it's -ln(w). I have no idea at all how to show that W^Z is U(0,1). What...
  3. T

    Probability Question with Random Variables perhaps.

    Homework Statement A communications channel transmits the digits 0 and 1. However, due to static, the digit transmitted is incorrectly received with probability 0.2. Suppose that we want to transmit an important message consisting of one binary digit. To reduce the chance of error, we...
  4. R

    Probabiltity space and random variables

    Homework Statement \Omega is a set of points \omega ; C_{i} i = 1, 2, ... 7 are subsets of \Omega; and ( \Omega, F, P) = (B_{i}, i/10, i = 1, 2, 3, 4 ) is a probability modal with B_{1} = C_{1} \cup C_{7}, B_{2} = C_{2} \cup C_{6}, B_{3} = C_{3} \cup C_{5} and B_{4} = C_{4}. State...
  5. M

    Optimizing Machine Learning with Irreducible Factorizations of Random Variables

    "Factorizing" random variables Suppose we have a (discrete) random variable X. Consider a random variable Y "equivalent" to X if there are functions f, g such that X = f(Y) and Y = g(X). Among other things, this implies H(Y) = H(X). Y = Y1 x Y2 x ... x Yn, where x is the cartesian product...
  6. S

    Meaning of iid random variables (plural)

    Hello, Can somebody pls explain to me what is the difference between generating random numbers and random variables. The confusion is mainly because most of the time texts write that for n (iid) random variables in the limiting sense reaches the expectation of the first random variable. I...
  7. K

    Independence of Random Variables

    Homework Statement Suppose X is a discrete random variable with probability mass function pX(x)=1/5, if x=-2,-1,0,1,2 pX(x)=0, otherwise Let Y=X2. Are X and Y independent? Prove using definitions and theorems. Homework Equations The Attempt at a Solution The random variables X and Y...
  8. S

    Expectations on the product of two dependent random variables

    I am studying for the FRM and there is a question concerning the captioned. I try to start off by following the standard Expectation calculation and breakdown the pdf into Bayesian Conditional Probability function. Then i got stuck there. Anyone can help me to find a proof on it? Many thanks.
  9. K

    Expectation of 2 random variables

    Let X and Y be two random variables. Say, for example, they have the following joint probability mass function x -1 0 1 -1 0 1/4 0 y 0 1/4 0 1/4 1 0 1/4 0 What is the proper way of computing E(XY)? Can I let Z=XY and find E(Z)=∑...
  10. S

    How to Prove the Sum of Squared Standard Normal Variables is Chi-Square?

    If Z1,Z2...Zn are standard normal random variable that are identically and independently distrubuted, then how can one prove that squaring and summing them will produce a Chi- squared random variable with n degrees of freedom. Any help on this will be greatly appreciated. I am new to this...
  11. D

    What is the Distribution of an Ambulance's Distance from an Accident on a Road?

    Homework Statement An ambulance travels back and forth, at a constant speed, along a road of length L. At a certain moment of time an accident occurs at a point uniformly distributed on the road. (That is, its distance from one of the fixed ends of the road is uniformly distributed over...
  12. E

    Are Ratios of IID Exponential Variables Independent of Their Sample Average?

    Suppose I have a sample X_1, ..., X_n of independently, identically distributed exponential random variables. One result I deducted was that the ratio of any two of them (eg. X_1 / X_2) is independent of the sample average 1/n * \sum_{i=1}^{n} X_i. (Aside: that ratio, as a random variable...
  13. S

    Continuous Random Variables and Prob. Distribution

    Man I hate probability...anyhow could some help me with this Q as I am not understanding how to set it up... Suppose that the force acting on a column which helps to support a building is normally distributed with mean 15.0 kips and standard deviation 1.25 kips: What is the probability...
  14. L

    Distribution of two independent exponential random variables

    Q: If X_1 and X_2 are independent exponential random variables with respective parameters \lambda_1 and \lambda_2, find the distribution of Z = X_1 / X_2. Discussion The best method to attack this problem apparent to me is coming up with a cumulative distributive function for Z and then...
  15. F

    Sum of random number of random variables

    Hi, Guys, I'm new to this forum, and don't have strong background in probability theory, so please bare with me if the question is too naive. Here's the question, In a problem I'm trying to model, I have a random variable (say, R), which is a sum of random number (say, N) of random variables...
  16. C

    Maximum of dependent exponential random variables

    Pdf (or mgf) of maximum of dependent exponential random variables ? max of Z1, Z2, Z3, Z4 where Z1 = |X1+X2+X3|^2 + |Y1+Y2+Y3|^2 Z2 = |X1-X2+X3|^2 + |Y1-Y2+Y3|^2 Z3 = |X1+X2-X3|^2 + |Y1+Y2-Y3|^2 Z4 = |X1-X2-X3|^2 + |Y1-Y2-Y3|^2 Xi, Yi are independent zero mean normal with...
  17. T

    Maximum of two correlated random variables

    Hi all, I want to find maximum of two random variables which are correlated and are non gaussian too. Baiscally I need an analytical orr approximate solution to their bivaraite distribution with means and varaince of resulting distribution. There is some work by Clark 'The greatest of finite...
  18. E

    A Probability Problem Involving 6 Random Variables

    Homework Statement Let X_1, \ldots, X_6 be a sequence of independent and identically distributed continuous random variables. Find (a) P\{X_6 > X_1 \, | \, X_1= \max(X_1, \ldots, X_5)\} (b) P\{X_6 > X_2 \, | \, X_1 = \max(X_1, \ldots, X_5)\} The attempt at a solution (a) is the...
  19. F

    Find c for Random Variable: E(X), E(X^2), E(1/X) & Var(X)

    a discrete random variable has range space {1, 2, ..., n} and satisfies P(X=j) = j/c for some number c. Find c, and then find E(X), E(X^2), E(1/X) and Var(X). thanks
  20. Somefantastik

    Independent identically distributed random variables

    For two independent and identically distributed random variables having the exponential distribution, do they have the same lambda value, or are the lambda values different?
  21. maverick280857

    Query regarding Independent and Identically Distributed random variables

    Hi I have a question regarding i.i.d. random variables. Suppose X_1,X_2,\ldots is sequence of independent and identically distributed random variables with probability density function f_{X}(x), mean = \mu and variance = \sigma^2 < \infty. Define Y_{n} = \frac{1}{n}\sum_{i=1}^{n}X_{i}...
  22. R

    Discrete random variables and PMF

    Homework Statement A discrete random variable X has the following PMF x | 1 | 2 | 3 | 4 | 5 | p(x)|1-a|1-2a|0.2| a | 0.5a| What are the values of "a" that are allowed in this PMF? For the allowed values, compute the expected value and the standard deviation of the variable...
  23. F

    Maximal number of independent random variables

    Hi all, assume we have a sample space with 2^n points. (it size is 2^n for some natural n) I need to prove that the maximal number of independent binary (indicator) random variables (which are not trivial, i.e. constant) is n... Thnks, Pitter
  24. P

    Minimum of i.i.d ~gamma random variables

    Hi, Another question... I know that the minimum of n i.i.d \lambda-exponentially distributed random variables is again exponentially distributed (with parameter n\lambda). Is something similar true for \Gamma(k,\theta) ...? that is, is the minimum of n i.i.d Gamma distributed random variables...
  25. G

    How to Construct Correlated Normal Variables from Independent Normals?

    I have two independent standard normal random variables X1,X2. Now I want to construct two new normal random variables Y1,Y2 with mean\mu1, \mu2 and variance (\sigma1)^2, (\sigma2)^2 and correlation \rho. How do I approach this problem?
  26. E

    Finding Joint PDF of Two Exponential Random Variables

    Can anyone tell me how to find the joint PDF of two random variables? I can't seem to find an explanation anywhere. I'm trying to solve a problem but I'm not sure where to go with it: Y is an exponential random variable with parameter \lambda=4. X is also an exponential random variable and...
  27. G

    Probability of continuous random variables

    Homework Statement A random variable has distribution function F(z) = P(y<= z) given by (this is a piecewise function) f(z) = 0 if z < -1 1/2 if -1 <= z < 1 1/2 + 1/4(z-1 if 1 <= z < 2 1 if 2 <= z What is P(Y = 2)? Find all the numbers t with the property that both P(Y <= t) >=...
  28. G

    What Are the Mean and Variance of This Random Variable?

    Homework Statement A random variable has a distribution function F(z) given by F(z) = 0 if z< -1 F(z) = 1/2 if -1 <= z < 2 F(z) = (1-z^{-3}) is 2 <= z Find the associated mean and variance. The Attempt at a Solution I drew the distribution function. I started with the associated...
  29. cepheid

    Finding the PDF of Z = arctan(x) from a Gaussian Distribution

    Homework Statement If X is represented by the Gaussian distribution, that is, f_{X}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp{(-\frac{x^2}{2\sigma^2})} find an expression for the pdf fZ(z) of Z = arctan(x). The Attempt at a Solution If Z =g(X), then g(X) is multivalued unless the range of...
  30. P

    Probability inequality for the sum of independent normal random variables

    Dear all, I wonder wheather there exsits a probability inequality for the sum of independent normal random variables (X_i are i.i.d. normal random varianble with mean \mu and variance \sigma^2): P\left(\frac{1}{n}\sum_{i=1}^n X_i - \mu> \epsilon\right)\leq f(\epsilon, \sigma^2,n) \right). We...
  31. B

    Prove the statistical distance between random variables

    Hi fellow members, I would appreciate if you could help with the following problem, it has had me stumped! Prove the statistical distance between random variables X & Y Thank You, and have a great day!
  32. J

    Calculating Mean and Variance of a Ratio of Gamma-Distributed Random Variables

    I have two random variables X and Y. Now the distribution of X and Y, is a bit complicated. Basically they follow Gamma distributions, X=\Gamma(k1,\theta) and Y=\Gamma(k2,\theta), but k1 and k2 are Poisson distributed. But I do have a closed form expression for the distribution of X and Y, and...
  33. G

    Convergence of Random Variables

    Hi, What is meant by "convergence of random variables"? Specifically, this statement confuses me: The sequence of random variables X_1, X_2, ... , X_n is said to converge in probability to the constant c if for any \epsilon > 0: \lim_{n \rightarrow \infty} P(\vert X_n - c \vert <...
  34. J

    Describing the distribution of n random variables

    Suppose I had n random variables, all of which have the same distribution but different mean and variances. How can I formally describe the distribution of these n random variables.
  35. T

    Conditional Probabilities relating quadratic forms of random variables

    Well I'm getting pretty frustrated by this problem which arose in my research, so I'm hoping someone here might set me on the right track. I start with n random variables x_i, i=1..n each independently normally distributed with mean of 0 and variance 1. I now have two different functions...
  36. S

    What Is the Probability of Guessing Correctly on a Mixed Multiple Choice Test?

    A multiple choice test contains 12 questions, 8 of which have 4 answers each to choose from and 4 of which have 5 answers to choose from. If a student randomly guesses all of his answers, what is the probability that he will get exactly 2 of the 4 answer questions correct and at least 3 of the 5...
  37. D

    Functions of Continuous random variables

    I have been working on this problem and can't seem to get the answer. Problem: X is a continuous random variable with a proabaility density function: f(x) = 1/4 if -2<=x<=2 0 other wise Let Y=1/X. Then P(Y<=1/2) = ? This is how I approached the problem...
  38. S

    Exploring Sets, Algebras & Random Variables

    Let S={1,2,3,4,5,6}, F=σ(A1,A2), ie., the σ-algebra generated by A1 and A1 (the smallest σ-algebra containing A1 and A2) with A1={1,2,3,4} and A2={3,4,5,6}. Please complete the following: a. List all sets in F b. Is the random variable X(w)= 2, w=1,2,3,4; X(w)=7, w=5,6 measurable w.r.t. F...
  39. D

    Probability of Low Grade Gas Shipment from Two Plants

    I've been working on a problem and was wondering if someone could check and see if I am on the right track. A company produces gas from two plants, A and B. (both are considered to be continuous randm variables; X and Y respectively) For Plant A, its probability density function is...
  40. M

    Distribution of minimum of random variables

    anyone's help would be really appreciated. I can't figure out that one. If X and Y are joint random variables, what is the joint distribution funtion of U=min(X,Y) and V=max(X,Y). I got something like 2[u(v-u) + ½u^2)] then how do i worked towards and expression for the marginal...
  41. W

    Do Independent Normal Variables Exceed a Given Total?

    Hi I'm wondering if someone can help me out on this question as to how to go about doing it: X_1, X_2... X_7 are independent random variables represnting a random sample of size 7 from the normal N(10, 7) distribution. Find to 3 dp probablitity that the sample total exceeds 88. I tried to...
  42. C

    Question about Independent Random Variables and iid

    I have a question about independent random variable: Let say we flip a fair coin, the set of outcome is S={H,T}, P(H)=1/2, P(T)=1/2. Define random variable X:S->R by X(H)=1, X(T)=-1. From what I read in books, I can define X1 and X2 as independent identically distributed (iid) random variables...
  43. C

    Gaussian Random Variables Question

    How do you show that a linear combination of two Gaussian Random Variables is again Gaussian?
  44. V

    Joint PDF of Random Variables X & Y -1 to 1

    Hi, I really need help with joint PDF, if anyone can help, that would be super! :smile: Random Variables X and Y have joint PDF fx,y (x, y) = 1/2 if -1 <= x <=y <= 1, and it is 0 otherwise a) what is fy (y)? b) what is fx|y (x|y)? c) what is E[X|Y = y]?
  45. M

    Expected Repairs for Leased Computer: Calculating Mean and Standard Deviation

    Hi I need some help. I don't think I did any of this right. A small business just leased a new computer and color laser printer for three years. The service contract for the computer offers unlimited repairs for a fee of $100 a year plus a $25 service charge for each repair needed. The...
  46. M

    What is the Probability Distribution of X in a Two Dice Roll?

    Hello (first time poster), i am having quite a bit of trouble with a particular problem on stats (which i despise of!) - in particular, discrete random variables.Ok here is the question: "Find the probability distribution of X in each of the following questions ... Two fair dice...
  47. K

    Probability distribution of function of continuous random variables

    I hope someone can help me understand functions of random variables: If X~Uniform(A,B), A < X < B Y~Normal(0,1), -inf < Y < inf and Z = X + Y - what is the pdf of Z? - how can I calculate a probability like P(Z < 3)? - what is the conditional probability P(Z<z | X = x)? - what is the...
  48. F

    How Can I Prove the Independence of Functions of Independent Random Variables?

    Hello, I need some help on the independence of random variables... "How do I prove that if X and Y are two independent random variables, then U=g(X) and V = h(Y) are also independent?" - Isn`t that if random variables X and Y are independent, it implies that f(x,y) = g(x)h(y) and vice...
  49. L

    How can I calculate the probability of X = 1,2,3 in a three-toss die experiment?

    Consider the experiment of tossing a die thrice. X is defined as the number of different faces that appear (i.e., X = 1,2,3). What is meant by the "number of different faces that appear"? Could you help me how could I get P(X = 1,2,3)?
Back
Top