In mathematics, real analysis is the branch of mathematical analysis that studies the behavior of real numbers, sequences and series of real numbers, and real functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.
Real analysis is distinguished from complex analysis, which deals with the study of complex numbers and their functions.
I have referred to this page: https://taoanalysis.wordpress.com/2020/03/26/exercise-5-3-2/ to check my answer.
The way I thought of the problem:
I know ##xy = \mathrm{LIM}_{n\to\infty} a_n b_n## and I know ##x'y = \mathrm{LIM}_{n\to\infty} a'_n b_n##. Thus if ##xy=x'y##, maybe I can try showing...
I refer to this page: https://taoanalysis.wordpress.com/2020/03/26/exercise-5-3-2/
I am having trouble understanding the purpose / motivation behind using the min as in ##\delta := \min\left(\frac{\varepsilon}{3M_1}, 1\right)## and ##\varepsilon' := \min\left(\frac{\varepsilon}{3M_2}...
In Tao's Analysis 1, Lemma 5.3.6, he claims that "We know that ##(a_n)_{n=1}^{\infty}## is eventually ##\delta##-steady for everyvalue of ##\delta>0##. This implies that it is not only ##\epsilon##-steady, ##\forall\epsilon>0##, but also ##\epsilon/ 2##-steady."
My question is, why do we need...
Let us just lay down some definitions. Both sequences are equivalent iff for each ##\epsilon>0## , there exists an N>0 such that for all n>N, ##|a_n-b_n|<\epsilon##.
A sequence is a Cauchy sequence iff ##\forall\epsilon>0:(\exists N>0: (\forall j,k>N:|a_j-a_k|>\epsilon))##.
We proceeded by...
We define :
$$M_i = sup \{f(x) : x \in [x_{i-1}, x_i ] \}$$
$$m_i = inf \{f(x) : x \in [ x_{i-1}, x_i ] \}$$
Now, if we make the length of the interval ##[x_{i-1}, x_i]## vanishingly small, then would we have ##M_i = m_i##? I have reasons for believing so because as the size of the interval is...
We have a function ##f: [a,b] \mapsto \mathbb R## (correct me if I'm wrong but the range ##\mathbb R## implies that ##f## is bounded). We have a partition ##P= \{x_0, x_1 , x_2 \cdots x_n \}## such that for any open interval ##(x_{i-1}, x_i)## we have
$$
f(x) =g(x)
$$
(##g:[a,b] \mapsto \mathbb...
Hello and Good Afternoon! Today I need the help of respectable member of this forum on the topic of integrability. According to Mr. Michael Spivak: A function ##f## which is bounded on ##[a,b]## is integrable on ##[a,b]## if and only if
$$ sup \{L (f,P) : \text{P belongs to the set of...
Ok, so here is what I have so far:
Suppose ##T_1## is infinite and ##\varphi : T_1 \rightarrow T_2## is a bijection.
Reasoning:
I'm thinking I would then show that there is a bijection, which would be a contradiction since an infinite set couldn't possibly have a one-to-one correspondence...
Here is my solution. I used mathjax to type it up in Overleaf. I feel like it makes sense, but I also have a feeling I might have "jumped the gun" with my logic. If it is correct, I would appreciate feedback on how to improve it. Thanks!
I am having a problem finding the right order above and below to find the finite expansion of a fraction of usual functions assembled in complicated ways. For instance, a question asked to find the limit as x approaches 0 for the following function
I know that to solve it we must first find...
I think the initial assumptions would allow me to prove this without induction.
Suppose ##(x_n)## is a real sequence that is bounded above. Define $$ y_n = \sup\{x_j | j \geq n\}.$$
Let ##n \in \mathbb{N}##. Then for all ##j \in \mathbb{N}## such that ##j \geq n + 1 > n##
$$ x_{j} \leq y_n.$$...
$$r<x<s$$
$$s-r>0$$
We enploy the Archimedean principle where
$$n(s-r)>1$$
We employ density of rationals where
$$\exists [m,m+1] \in Q$$
Such that
$$nr\in [m,m+1)$$
Therefore
$$m\leq nr \lt m+1$$$$ \frac m n \leq r \lt \frac m n + \frac 1 n $$
Since
$$ \frac m n \leq r $$
Then
$$...
Summary: Is Baby Rudin a good choice for first Real Analysis textbook for someone without strong pure math background?
I've completed 2 semesters of college calculus, but not "pure math" calculus which is taught to math students. I'm looking for introductory text on Real Analysis and I've...
Summary: Rudin theorem 1.21
He has said that as t=X/(X+1) then t^n<t<1 then maximum value of t is 1. then in the next part he has given that t^n<t<x. as maximum value of t is less than 1 why has he given that t<x ?
For the set A:
Note that if n is odd, then ## A = \{ -1 + \frac {2} {n} : \text{n is an odd integer} \} ## . If n is even, A = ## \{1 + ~ \frac {2} {n} : \text{ n is an even integer} \} ## .
By a previous exercise, we know that ## \frac {1} {n} ## -> 0. Let ## A_1 ## be the sequence when n...
Does anyone have a recommendation for a book(s) to use for the self-study of real analysis? I have just finished Apostol Calculus, Vol. 2 and would like to move on to real analysis. I am not sure whether I should continue following Apostol and move on to Apostol mathematical analysis or...
Let ##f:\mathbb{R}^n\rightarrow\mathbb{R}^n##. Is there any class of function and some type of "growth conditions" such that bounds like below can be established:
\begin{equation}
||f(x)||\geq g\left( \text{dist}(x,\mathcal{X})\right),
\end{equation}
with ##\mathcal{X}:= \{x:f(x)=0\}## (zero...
I'm stuck on a proof involving the Bolzano-Weierstrass theorem. Consider the following statement:
$$f'(x)>0 \ \text{on} \ [a,b] \implies \forall x_1,x_2\in[a,b], \ f(x_1)<f(x_2) \ \text{for} \ x_1<x_2 $$ i.e. a positive derivative over an interval implies that the function is growing over the...
Homework Statement
We've been given a set of hints to solve the problem below and I'm stuck on one of them
Let f:[a,b]->R , prove, using the hints below, that if f is continuous and if f(a) < 0 < f(b), then there exists a c ∈ (a,b) such that f(c) = 0
Hint
let set S = {x∈[a,b]:f(x)≤0}
let c =...
Hi forum.
I'm trying to prove a claim from Mathematical Analysis I - Zorich since some days, but I succeeded only in part.
The complete claim is:
$$\left\{\begin{matrix} f\in\mathcal{C}^{(n)}(-1,1) \\ \sup_{x\in (-1,1)}|f(x)|\leq 1 \\ |f'(0)|>\alpha _n \end{matrix}\right. \Rightarrow \exists...
Problem:
Let $\left(X, M, \mu\right)$ be a probability space. Suppose $f \in L^\infty\left(\mu\right)$ and $\left| \left| f \right| \right|_\infty > 0$. Prove that
$lim_{n \rightarrow \infty} \frac{\int_{X}^{}\left| f \right|^{n+1} \,d\mu}{\int_{X}^{}\left| f \right|^{n} \,d\mu} = \left| \left|...
Hey Guys, I posed this on Math Stackexchange but no one is offering a good answering. I though you guys might be able to help :)
https://math.stackexchange.com/questions/3049661/single-point-continuity-spivak-ch-6-q5
Homework Statement
2. Relevant equation
Below is the definition of the limit superior
The Attempt at a Solution
I tried to start by considering two cases, case 1 in which the sequence does not converge and case 2 in which the sequence converges and got stuck with the second case.
I know...
Homework Statement
Let us have ##n \geq 3## points in a square whose side length is ##1##. Prove that there exists a graph with these points such that ##G## is connected, and
$$\sum_{\{v_i,v_j\} \in E(G)}{|v_i - v_j|} \leq 10\sqrt{n}$$
Prove also the ##10## in the inequality can't be replaced...
Homework Statement
If I have the two curves
##\phi (t) = ( \cos t , \sin t ) ## with ## t \in [0, 2\pi]##
##\psi(s) = ( \sin 2s , \cos 2s ) ## with ## s \in [\frac{\pi}{4} , \frac{5 \pi}{4} ] ##
My textbook says that they are equivalent because ##\psi(s) = \phi \circ g^{-1}(s) ## where ##...
Homework Statement
Let ##S\subseteq \Bbb{R}## and ##T = \{ t\in \Bbb{R} : \exists s\in S, \vert t-s\vert \lt \epsilon\}## where ##\epsilon## is fixed. I need to show T is an open set.
Homework Equations
n/a
The Attempt at a Solution
Let ##x \in T##, then ##\exists \sigma \in S## such that ##x...
Homework Statement
Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}## (This means that for each ##x \in \Bbb{R}## there is an ##\epsilon \gt 0## where if ##\vert x-t\vert \lt \epsilon## then ##f(x) \leq f(t)##.). Then the image of ##f## is...
I would like to learn (self-study) the theory behind the n-dimensional Riemann integral (multiple Riemann integrals, not Lebesgue integral). I am from Croatia and found lecture notes which Croatian students use but they are not suitable for self-study. The notes seem to be based on the book: J...
I will state the problem below. I don't quite understand what I am needing to show. Could someone point me in the right direction? I would greatly appreciate it.
Problem:
Let p be a natural number greater than 1, and x a real number, 0<x<1. Show that there is a sequence $(a_n)$ of integers...
Here are a couple more problems I am working on!
Problem 1:
Prove that,
$limsupa_n+liminfb_n \leq limsup(a_n+b_n) \leq limsupa_n+limsupb_n$
Provided that the right and the left sides are not of the form $\infty - \infty$.
Proof:
Consider $(a_n)$ and $(b_n)$, sequences of real numbers...
I am working a bunch of problems for my Real Analysis course.. so I am sure there are more to come. I feel like I may have made this proof too complicated. Is it correct? And if so, is there a simpler method?
Problem:
Show that $liminfa_n \leq limsupa_n$.
Proof:
Consider a sequence of real...
In Rudin, the derivative of a function ##f: [a,b] \to \mathbb{R}## is defined as:
Let ##f## be defined (and real-valued) on ##[a,b]##. For any ##x \in [a,b]##, form the quotient ##\phi(t) = \frac{f(t) - f(x)}{t-x}\quad (a < t <b, t \neq x)## and define ##f'(x) = \lim_{t \to x} \phi(t)##, if the...
I have a Dover edition of Louis Brand's Advanced Calculus: An Introduction to Classical Analysis. I really like this book, but find his proof of limit laws for sequences questionable. He first proves the sum of null sequences is null and that the product of a bounded sequence with a null...
Homework Statement
Show that ##f(x)=\frac{1}{x^2}## is not uniformly continuous at ##(0,\infty)##.
Homework Equations
N/A
The Attempt at a Solution
Given ##\epsilon=1##. We want to show that we can compute for ##x## and ##y## such that ##\vert x-y\vert\lt\delta## and at the same time ##\vert...
Homework Statement
Let ##K\neq\emptyset## be a compact set in ##\Bbb{R}## and let ##c\in\Bbb{R}##. Then ##\exists a\in K## such that ##\vert c-a\vert=\inf\{\vert c-x\vert : x\in K\}##.
2. Relevant results
Any set ##K## is compact in ##\Bbb{R}## if and only if every sequence in ##K## has a...
Homework Statement
Let ##p\in\Bbb{R}##. Then the function ##f:(0,\infty)\rightarrow \Bbb{R}## defined by ##f(x):=x^p##. Then ##f## is continuous.
I need someone to check what I've done so far and I really need help finishing the last part. I am clueless as to how to show continuity for...
Hey,
I tried to construct the derivation of the integral C with respect to Y:
$$ \frac{\partial C}{\partial Y} = ? $$
$$ C = \frac{2}{\pi} \int_0^{\infty} Re(d(\alpha) \frac{exp(-i \cdot ln(f))}{i \alpha}) d \alpha $$
with
$$d(\alpha) = exp(i \alpha (b + ln(Y)) - u) \cdot exp(v(\alpha) + z...
Homework Statement
Let ##x\in\Bbb{R}## such that ##x\neq 0##. Then ##x=LIM_{n\rightarrow\infty}a_n## for some Cauchy sequence ##(a_n)_{n=1}^{\infty}## which is bounded away from zero.
2. Relevant definitions and propositions:
3. The attempt at a proof:
Proof:(by construction)
Let...
Homework Statement
"A set ##A\subset [0,1]## is dense in ##[0,1]## iff every open interval that intersects ##[0,1]## contains ##x\in A##. Suppose ##f:[0,1]\rightarrow ℝ## is integrable and ##f(x) = 0,x\in A## with ##A## dense in ##[0,1]##. Show that ##\int_{0}^{1}f(x)dx=0##."
Homework...
Homework Statement
1) Suppose ##t## is a subsequential limit for ##(s_n)##. Write the precise definition of the meaning of this statement.
2) Explain why there exists a strictly increasing sequence ##(n_k)^\infty_{k=1}## of natural numbers such that ##\lim s_{n_k}=t##.
Homework EquationsThe...
This post is to set forth a little game that attempts to demonstrate something that I find to be intriguing about the real numbers. The game is one that takes place in a theoretical sense only. It starts by assuming we have two pieces of paper. On each is a line segment of length two: [0,2]...
Homework Statement
Suppose that ##( s_n )## and ## (t_n)## are bounded sequences. Given that ##A_k## is an upper bound for ##\{s_n : n \ge k \}## and ##B_k## is an upper bound for ##\{t_n : n \ge k \}## and that ##A_k + B_k## is an upper bound for ##\{s_n + t_n : n \ge k \}##, show that ##\sup...
Homework Statement
Question: Let ##I = [0,1]##. Suppose ##f## is a continuous mapping of ##I## into ##I##. Prove that ##f(x) = x## for at least one ##x∈I##.
Homework Equations
Define first(##[A,B]##) = ##A## and second(##[A,B]##) = ##B## where ##[A,B]## is an interval in ##R##.
The Attempt at...
Dear Everybody,
I need some help with seeing if there any logical leaps or any errors in this proves.
Corollary 1.2.8 to Proposition 1.2.8 states:
if $S\subset\Bbb{R}$ is a non-empty set, bounded from below, then for every $\varepsilon>0$ there exists a $y\in S$ such that $\inf...
Prove this Proposition 1.2.6 v in Introduction to Real Analysis by Jiri Lebl
Dear Everybody,
I need some help with seeing if there are any logical leaps or errors in this proof.
The theorem states:
$A\subset\Bbb{R}$ and $A\ne\emptyset$
If $x<0$ and A is bounded below, then...
I am reading "Multidimensional Real Analysis I: Differentiation by J. J. Duistermaat and J. A. C. Kolk ...
I am focused on Chapter 1: Continuity ... ...
I need help with an aspect of Lemma 1,1,7 (ii) ...
Duistermaat and Kolk"s Lemma 1.1.7 reads as follows:
In the above Lemma part (ii)...