I am currently trying to self study Real analysis . I have completed Hubbard's Multivariable book & Strang's Linear algebra book. I have Apostol's Mathematical Analysis & Baby Rudin . I started with rudin yesterday and was making excellent headway until I encountered a theorem about 15 pages in...
Homework Statement:: Show that for every real number ##x## there is exactly one integer ##N## such that ##N \leq x < N+1##. (This integer is called the integer part of ##x##, and is sometimes denoted ##N = \lfloor x\rfloor##.)
Relevant Equations:: N/A
I have tried reading the solution given...
I have referred to this page: https://taoanalysis.wordpress.com/2020/03/26/exercise-5-3-2/ to check my answer.
The way I thought of the problem:
I know ##xy = \mathrm{LIM}_{n\to\infty} a_n b_n## and I know ##x'y = \mathrm{LIM}_{n\to\infty} a'_n b_n##. Thus if ##xy=x'y##, maybe I can try showing...
I refer to this page: https://taoanalysis.wordpress.com/2020/03/26/exercise-5-3-2/
I am having trouble understanding the purpose / motivation behind using the min as in ##\delta := \min\left(\frac{\varepsilon}{3M_1}, 1\right)## and ##\varepsilon' := \min\left(\frac{\varepsilon}{3M_2}...
In Tao's Analysis 1, Lemma 5.3.6, he claims that "We know that ##(a_n)_{n=1}^{\infty}## is eventually ##\delta##-steady for everyvalue of ##\delta>0##. This implies that it is not only ##\epsilon##-steady, ##\forall\epsilon>0##, but also ##\epsilon/ 2##-steady."
My question is, why do we need...
Let us just lay down some definitions. Both sequences are equivalent iff for each ##\epsilon>0## , there exists an N>0 such that for all n>N, ##|a_n-b_n|<\epsilon##.
A sequence is a Cauchy sequence iff ##\forall\epsilon>0:(\exists N>0: (\forall j,k>N:|a_j-a_k|>\epsilon))##.
We proceeded by...
We define :
$$M_i = sup \{f(x) : x \in [x_{i-1}, x_i ] \}$$
$$m_i = inf \{f(x) : x \in [ x_{i-1}, x_i ] \}$$
Now, if we make the length of the interval ##[x_{i-1}, x_i]## vanishingly small, then would we have ##M_i = m_i##? I have reasons for believing so because as the size of the interval is...
We have a function ##f: [a,b] \mapsto \mathbb R## (correct me if I'm wrong but the range ##\mathbb R## implies that ##f## is bounded). We have a partition ##P= \{x_0, x_1 , x_2 \cdots x_n \}## such that for any open interval ##(x_{i-1}, x_i)## we have
$$
f(x) =g(x)
$$
(##g:[a,b] \mapsto \mathbb...
Hello and Good Afternoon! Today I need the help of respectable member of this forum on the topic of integrability. According to Mr. Michael Spivak: A function ##f## which is bounded on ##[a,b]## is integrable on ##[a,b]## if and only if
$$ sup \{L (f,P) : \text{P belongs to the set of...
Ok, so here is what I have so far:
Suppose ##T_1## is infinite and ##\varphi : T_1 \rightarrow T_2## is a bijection.
Reasoning:
I'm thinking I would then show that there is a bijection, which would be a contradiction since an infinite set couldn't possibly have a one-to-one correspondence...
Here is my solution. I used mathjax to type it up in Overleaf. I feel like it makes sense, but I also have a feeling I might have "jumped the gun" with my logic. If it is correct, I would appreciate feedback on how to improve it. Thanks!
I am having a problem finding the right order above and below to find the finite expansion of a fraction of usual functions assembled in complicated ways. For instance, a question asked to find the limit as x approaches 0 for the following function
I know that to solve it we must first find...
I think the initial assumptions would allow me to prove this without induction.
Suppose ##(x_n)## is a real sequence that is bounded above. Define $$ y_n = \sup\{x_j | j \geq n\}.$$
Let ##n \in \mathbb{N}##. Then for all ##j \in \mathbb{N}## such that ##j \geq n + 1 > n##
$$ x_{j} \leq y_n.$$...
$$r<x<s$$
$$s-r>0$$
We enploy the Archimedean principle where
$$n(s-r)>1$$
We employ density of rationals where
$$\exists [m,m+1] \in Q$$
Such that
$$nr\in [m,m+1)$$
Therefore
$$m\leq nr \lt m+1$$$$ \frac m n \leq r \lt \frac m n + \frac 1 n $$
Since
$$ \frac m n \leq r $$
Then
$$...
Summary: Is Baby Rudin a good choice for first Real Analysis textbook for someone without strong pure math background?
I've completed 2 semesters of college calculus, but not "pure math" calculus which is taught to math students. I'm looking for introductory text on Real Analysis and I've...
Summary: Rudin theorem 1.21
He has said that as t=X/(X+1) then t^n<t<1 then maximum value of t is 1. then in the next part he has given that t^n<t<x. as maximum value of t is less than 1 why has he given that t<x ?
For the set A:
Note that if n is odd, then ## A = \{ -1 + \frac {2} {n} : \text{n is an odd integer} \} ## . If n is even, A = ## \{1 + ~ \frac {2} {n} : \text{ n is an even integer} \} ## .
By a previous exercise, we know that ## \frac {1} {n} ## -> 0. Let ## A_1 ## be the sequence when n...
Does anyone have a recommendation for a book(s) to use for the self-study of real analysis? I have just finished Apostol Calculus, Vol. 2 and would like to move on to real analysis. I am not sure whether I should continue following Apostol and move on to Apostol mathematical analysis or...
Let ##f:\mathbb{R}^n\rightarrow\mathbb{R}^n##. Is there any class of function and some type of "growth conditions" such that bounds like below can be established:
\begin{equation}
||f(x)||\geq g\left( \text{dist}(x,\mathcal{X})\right),
\end{equation}
with ##\mathcal{X}:= \{x:f(x)=0\}## (zero...
I'm stuck on a proof involving the Bolzano-Weierstrass theorem. Consider the following statement:
$$f'(x)>0 \ \text{on} \ [a,b] \implies \forall x_1,x_2\in[a,b], \ f(x_1)<f(x_2) \ \text{for} \ x_1<x_2 $$ i.e. a positive derivative over an interval implies that the function is growing over the...
Homework Statement
We've been given a set of hints to solve the problem below and I'm stuck on one of them
Let f:[a,b]->R , prove, using the hints below, that if f is continuous and if f(a) < 0 < f(b), then there exists a c ∈ (a,b) such that f(c) = 0
Hint
let set S = {x∈[a,b]:f(x)≤0}
let c =...
Hi forum.
I'm trying to prove a claim from Mathematical Analysis I - Zorich since some days, but I succeeded only in part.
The complete claim is:
$$\left\{\begin{matrix} f\in\mathcal{C}^{(n)}(-1,1) \\ \sup_{x\in (-1,1)}|f(x)|\leq 1 \\ |f'(0)|>\alpha _n \end{matrix}\right. \Rightarrow \exists...
Problem:
Let $\left(X, M, \mu\right)$ be a probability space. Suppose $f \in L^\infty\left(\mu\right)$ and $\left| \left| f \right| \right|_\infty > 0$. Prove that
$lim_{n \rightarrow \infty} \frac{\int_{X}^{}\left| f \right|^{n+1} \,d\mu}{\int_{X}^{}\left| f \right|^{n} \,d\mu} = \left| \left|...
Hey Guys, I posed this on Math Stackexchange but no one is offering a good answering. I though you guys might be able to help :)
https://math.stackexchange.com/questions/3049661/single-point-continuity-spivak-ch-6-q5
Homework Statement
2. Relevant equation
Below is the definition of the limit superior
The Attempt at a Solution
I tried to start by considering two cases, case 1 in which the sequence does not converge and case 2 in which the sequence converges and got stuck with the second case.
I know...
Homework Statement
Let us have ##n \geq 3## points in a square whose side length is ##1##. Prove that there exists a graph with these points such that ##G## is connected, and
$$\sum_{\{v_i,v_j\} \in E(G)}{|v_i - v_j|} \leq 10\sqrt{n}$$
Prove also the ##10## in the inequality can't be replaced...
Homework Statement
If I have the two curves
##\phi (t) = ( \cos t , \sin t ) ## with ## t \in [0, 2\pi]##
##\psi(s) = ( \sin 2s , \cos 2s ) ## with ## s \in [\frac{\pi}{4} , \frac{5 \pi}{4} ] ##
My textbook says that they are equivalent because ##\psi(s) = \phi \circ g^{-1}(s) ## where ##...
Homework Statement
Let ##S\subseteq \Bbb{R}## and ##T = \{ t\in \Bbb{R} : \exists s\in S, \vert t-s\vert \lt \epsilon\}## where ##\epsilon## is fixed. I need to show T is an open set.
Homework Equations
n/a
The Attempt at a Solution
Let ##x \in T##, then ##\exists \sigma \in S## such that ##x...
Homework Statement
Let ##f:\Bbb{R} \to \Bbb{R}## be a function such that ##f## has a local minimum for all ##x \in \Bbb{R}## (This means that for each ##x \in \Bbb{R}## there is an ##\epsilon \gt 0## where if ##\vert x-t\vert \lt \epsilon## then ##f(x) \leq f(t)##.). Then the image of ##f## is...
I would like to learn (self-study) the theory behind the n-dimensional Riemann integral (multiple Riemann integrals, not Lebesgue integral). I am from Croatia and found lecture notes which Croatian students use but they are not suitable for self-study. The notes seem to be based on the book: J...
I will state the problem below. I don't quite understand what I am needing to show. Could someone point me in the right direction? I would greatly appreciate it.
Problem:
Let p be a natural number greater than 1, and x a real number, 0<x<1. Show that there is a sequence $(a_n)$ of integers...
Here are a couple more problems I am working on!
Problem 1:
Prove that,
$limsupa_n+liminfb_n \leq limsup(a_n+b_n) \leq limsupa_n+limsupb_n$
Provided that the right and the left sides are not of the form $\infty - \infty$.
Proof:
Consider $(a_n)$ and $(b_n)$, sequences of real numbers...
I am working a bunch of problems for my Real Analysis course.. so I am sure there are more to come. I feel like I may have made this proof too complicated. Is it correct? And if so, is there a simpler method?
Problem:
Show that $liminfa_n \leq limsupa_n$.
Proof:
Consider a sequence of real...
In Rudin, the derivative of a function ##f: [a,b] \to \mathbb{R}## is defined as:
Let ##f## be defined (and real-valued) on ##[a,b]##. For any ##x \in [a,b]##, form the quotient ##\phi(t) = \frac{f(t) - f(x)}{t-x}\quad (a < t <b, t \neq x)## and define ##f'(x) = \lim_{t \to x} \phi(t)##, if the...
I have a Dover edition of Louis Brand's Advanced Calculus: An Introduction to Classical Analysis. I really like this book, but find his proof of limit laws for sequences questionable. He first proves the sum of null sequences is null and that the product of a bounded sequence with a null...
Homework Statement
Show that ##f(x)=\frac{1}{x^2}## is not uniformly continuous at ##(0,\infty)##.
Homework Equations
N/A
The Attempt at a Solution
Given ##\epsilon=1##. We want to show that we can compute for ##x## and ##y## such that ##\vert x-y\vert\lt\delta## and at the same time ##\vert...
Homework Statement
Let ##K\neq\emptyset## be a compact set in ##\Bbb{R}## and let ##c\in\Bbb{R}##. Then ##\exists a\in K## such that ##\vert c-a\vert=\inf\{\vert c-x\vert : x\in K\}##.
2. Relevant results
Any set ##K## is compact in ##\Bbb{R}## if and only if every sequence in ##K## has a...
Homework Statement
Let ##p\in\Bbb{R}##. Then the function ##f:(0,\infty)\rightarrow \Bbb{R}## defined by ##f(x):=x^p##. Then ##f## is continuous.
I need someone to check what I've done so far and I really need help finishing the last part. I am clueless as to how to show continuity for...
Hey,
I tried to construct the derivation of the integral C with respect to Y:
$$ \frac{\partial C}{\partial Y} = ? $$
$$ C = \frac{2}{\pi} \int_0^{\infty} Re(d(\alpha) \frac{exp(-i \cdot ln(f))}{i \alpha}) d \alpha $$
with
$$d(\alpha) = exp(i \alpha (b + ln(Y)) - u) \cdot exp(v(\alpha) + z...
Homework Statement
Let ##x\in\Bbb{R}## such that ##x\neq 0##. Then ##x=LIM_{n\rightarrow\infty}a_n## for some Cauchy sequence ##(a_n)_{n=1}^{\infty}## which is bounded away from zero.
2. Relevant definitions and propositions:
3. The attempt at a proof:
Proof:(by construction)
Let...
Homework Statement
"A set ##A\subset [0,1]## is dense in ##[0,1]## iff every open interval that intersects ##[0,1]## contains ##x\in A##. Suppose ##f:[0,1]\rightarrow ℝ## is integrable and ##f(x) = 0,x\in A## with ##A## dense in ##[0,1]##. Show that ##\int_{0}^{1}f(x)dx=0##."
Homework...
Homework Statement
1) Suppose ##t## is a subsequential limit for ##(s_n)##. Write the precise definition of the meaning of this statement.
2) Explain why there exists a strictly increasing sequence ##(n_k)^\infty_{k=1}## of natural numbers such that ##\lim s_{n_k}=t##.
Homework EquationsThe...
This post is to set forth a little game that attempts to demonstrate something that I find to be intriguing about the real numbers. The game is one that takes place in a theoretical sense only. It starts by assuming we have two pieces of paper. On each is a line segment of length two: [0,2]...
Homework Statement
Suppose that ##( s_n )## and ## (t_n)## are bounded sequences. Given that ##A_k## is an upper bound for ##\{s_n : n \ge k \}## and ##B_k## is an upper bound for ##\{t_n : n \ge k \}## and that ##A_k + B_k## is an upper bound for ##\{s_n + t_n : n \ge k \}##, show that ##\sup...
Homework Statement
Question: Let ##I = [0,1]##. Suppose ##f## is a continuous mapping of ##I## into ##I##. Prove that ##f(x) = x## for at least one ##x∈I##.
Homework Equations
Define first(##[A,B]##) = ##A## and second(##[A,B]##) = ##B## where ##[A,B]## is an interval in ##R##.
The Attempt at...
Dear Everybody,
I need some help with seeing if there any logical leaps or any errors in this proves.
Corollary 1.2.8 to Proposition 1.2.8 states:
if $S\subset\Bbb{R}$ is a non-empty set, bounded from below, then for every $\varepsilon>0$ there exists a $y\in S$ such that $\inf...