Homework Statement
Didn't know what to title this one. I found it while I was doing some practice problems :
http://gyazo.com/51a668d4db1a1638353a9de4b43d42ed
Homework Equations
lcm(m,n) = k for some integer k.
The Attempt at a Solution
I'm not really sure how to start this...
I have a question about the proof that I attached...
1) Since R/I is not the zero ring, we know that 1 \not= 0. What is the reason to say 1 + I \not= 0 + I instead of 1 \not= 0?2) Also, how do we compute something like (a+I)(b+I)? Isn't this correct (a+I)(b+I) = ab+aI+bI+I^2?
3) Finally, if we...
Homework Statement
If R is a domain with F=Frac(R), prove that Frac(R[x]) is isomorphic to F(x).
Homework Equations
The Attempt at a Solution
Let \phi : Frac(R[x]) \rightarrow F(x) be a map sending (f(x),g(x)) to f(x)/g(x). We need to show that \phi is a ring homomorphism. Let f,g,h,k be in...
Homework Statement
This is the diagram http://s1302.beta.photobucket.com/user/Rameel17/media/dd_zps43d04d44.png.html
A single large circular Olympic ring hangs freely at the lower end of a strong flexible ring which is firmly supported at the other end. Two identical beads each has a mass...
I attached a page from my textbook, because there was something that I didn't understand.
What I don't understand is in the proof it says let f(x) be...etc. but in the theorem, it says nothing about f(x). In other words, where in the thoerem does it say anything about f(x). Why are they...
I've just got confused about how the induced current in a metallic ring is calculated.
Consider a metallic ring (radius a, resistance R and inductance L) immersed in a oscillating magnetic field, which is oriented orthogonally to the plane of the ring.
The variation in flux of magnetic...
Hi!
I aim to use a piezoelectric wafer and get it to work as a loudspeaker by supplying it with a fluctuating voltage withing the audible region. I know this can be done using a simple DC to AC invertor/oscillator circuit, but the challenge is to build it as small as possible.
I looked up...
Homework Statement
Apply the physical pendulum equation to a ring pivoted on its edge to derive the equation for the period of a ring pendulum for small oscillations about the pivot point. Include a diagram showing the restoring torque acting on a ring pendulum displaced from equilibrium...
Good afternoon. Here is the problem:
Show that if $R$ is a ring with unity and $N$ is an ideal of $R$ such that $N \neq R$, then $R/N$ is a ring with unity.
My answer: Consider the homomorphism $\phi: R \to R/N$. Given $r \in R$ we have that $\phi(r) = r + N = \phi(1 \cdot r) = \phi(r \cdot 1)...
Good afternoon! Along the same lines as the other, here is the question:
Show that the quotient ring of a field is either the trivial one or is isomorphic to the field.
My answer: Let $N$ be an ideal of the field $F$. Assume that $N \neq \{ 0 \}$. Consider the homomorphism $\phi: F \to F / N$...
Good afternoon! I wasn't able to get the necessary grade in abstract algebra and now I'm redoing many exercises and I would like some correction. All help is appreciated! (Smile)
Here is the question:
Show that every homomorphism of a field to a ring is one-to-one or null.
Let $\phi: F \to R$...
Let k[x,y,z,t] be the polynomial ring in four variables and let I=<x,y>, J=<z, x-t> be ideals of the ring.
I want to show that IJ=I \cap J and one direction is trivial. But proving I \cap J \subset IJ has stumped me so far. Anyone have any ideas?
Homework Statement
I am asked to calculate the gravitational potential of the ring at the point Q. I can do this for point P, but Q is killin me...
Homework Equations
V = GM/r
M = ρ2∏a
dM = ρadθ
radius of ring = a
The Attempt at a Solution
Well for the case at point P, it...
Hi,
I sincerely hope one of you could please help me with the equations in the following problem.
Homework Statement
A toy car is forced to move along a circular ring placed on a table with no friction. The friction coefficient between the ring and the car is given as μ. At t=0 the car...
I'm working on a project that uses solenoids for mechanical activation. The solenoids have lugs for the + and - electrical connections. I am connecting my wires to the lugs with ring terminals.
The problem I have is that the product will be subject to outdoor, harsh environmental...
Homework Statement
The figure shows a ring of copper with its plane perpendicular to the axis of the nearby rod-shaped magnet. For each of the situations described below, indicate whether there will or will not be a current induced in the ring and justify your reasoning, drawing pictures if...
First off, sorry if this is a simple question, I'm very bad at electromagnetism.
Homework Statement
A metal ring of radius R rotates with constant angular velocity ω about a diameter. Perpendicular to the rotation axis is a constant magnetic induction field \underline{B}. Find the EMF...
How should one prove that the integers form a commutative ring? I am not sure exactly where to go with this and how much should be explicitly shown.
A ring is meant to be a system that shares properties of Z and Zn. A commutative ring is a ring, with the commutative multiplication property...
Homework Statement
A proton is moving along the main axis of a uniformly charged thin ring. The charge density on the ring is 5.0nC/cm and the ring radius is 1.0cm. Initially the proton is 2.0cm (along the axis) from the center of the ring with the velocity towards the center of the ring. What...
Homework Statement
A proton is moving along the main axis of a uniformly charged thin ring. The charge density on the ring is 5.0 nC / cm and the ring radius is 1.0 cm. Initially the proton is 2.0 cm (along the axis ) from the center of the ring with the velocity towards the center of the...
Homework Statement
Consider the ring of 3x3 matrices over the ring Z36.How many different matrices are there in the two sided ideal generated by the matrix diag(0,-6,18)?Homework Equations
The Attempt at a Solution
I computed a general matrix in the two sided ideal,but counting is complicated...
I just had a discussion with someone who said he thought about quotient rings of polynomials as simply adjoining an element that is a root of the polynomial defining the ideal.
For example, consider a field, F, and a polynomial, x-a, in F[x]. If we let (x-a) denote the ideal generated by x-a...
Homework Statement
A 20 A current is flowing through a ring. Ring's diameter is 30 cm.
What is the value of the Moment that is affecting the ring?
Homework Equations
The Attempt at a Solution
Homework Statement
Show that the ideal
(3, x^3 - x^2 + 2x -1) \text{ in } \mathbb{Z}[x]
is not principal. (The parentheses mean 'the ideal generated by the elements enclosed in parentheses')
2. The attempt at a solution
I came up with a solution (see attachment), it is just rather...
Homework Statement
A circular ring of wire of radius r0 lies in a plane perpendicular to the x-axis and is centered at the origin. The ring has a positive electric charge spread uniformly over it. The electric field in the x-axis direction, E, at the point given by
E=kx/((x^2 +r0^2)^(3/2))...
I was just looking at wikipedia's article on ring homomorphisms (http://en.wikipedia.org/wiki/Ring_homomorphism) and I am a little confused.
If you look at the definition they give for ring homomorphism, they require only that addition and multiplication is preserved over the homomorphism...
In abstract algebra (ring theory specifically), when we are dealing with factorization, UFD's, and so on, we are often only interested in the multiplicative structure of the ring, not the additive structure. So here is the basic situation we face: we a start with an integral domain (R,+,*)...
I have to find the expectation value of the z component of the angular momentum for a particle on a ring and the expectation value of the z component of the angular momentum squared for a particle on a ring.
The wavefunction is e^((± imx))
I've determined that the expectation value for the...
Aparently the fuel gas is used for the heater in the production of benzene from toluene. But once this, it goes to the fuel gas ring main which I have no clue of what it is!
Help :)
Homework Statement
Let D be a division ring, C its center and let S be a division subring of D which is stabilized by every map x -> dxd-1, d≠0 in D. Show that either S = D or S is a subset of C.
2. The attempt at a solution
I haven't actually started working on it yet because I am not...
See attachment
the green spot shows the initial position of a particle
the blue spot shows the position at which the particle loses contact with the ring.
Intuitively one can easily deduce that the particle would indeed loose contact with the ring.
Is there a way to prove this...
1. Find the work required to move a point charge from infinitely far away to the center of a thin ring.
The point charge is q= 1nanocoulomb.
The rings charge is Q= 2 nanoC.
The ring has a radius r=2m.Homework Equations
U= qV
W= -U
Thoughts
I think the first thing to consider is the field E...
Say we have two particles of mass m which repel each other, V = V(seperation). Let these particles be constrained to move on a circle of radius r. The particles want to stay at opposite sides of the circle because they repel each other. We want to treat this as a quantum problem so the particles...
Hello,
I was reading my textbook and watching MIT Opencourseware and noticed a discrepancy between the two.
There was a string attached to a massless ring on a pole without friction, on the MIT website it said the ring will go twice the amplitude of the wave, but in the textbook it said it...
Homework Statement
I am curious,
if I,J, and M are ideals of the commutative ring R, and M/I\subseteqJ/I, then M\subseteqJHomework Equations
M/I = { m+I : m is in M}
J/I = { j+I : j is in J}
I\subseteqR is an ideal if
1.) if a and b are in I then a+b is in I
2.) if r is in R and a is in I...
Homework Statement
A ring of radius 6 cm that lies in the yz
plane carries positive charge of 7 μC uniformly
distributed over its length. A particle of mass
m carrying a charge of −7 μC executes small
oscillations about the center of the ring on its
axis with an angular frequency of 15...
Hello everybody. Here's the problem:
$$\text{Let } R \text{ be a ring with identity. Let }a \in R \text{ and suppose that exists an unique } a' \in R \text{ such that }a a' =1. \text{ Prove that } a'a=1.$$
My solution:
Since we have an identity, it has an inverse (itself), which means we can...
We all know that M.I of a Uniform rigid rod about an axis perpendicular to it's length and passing through it's center is MLsquare/12.Where M is mass and L is length of the rod. If it is broken to half such that M becomes M/2 and L becomes L/2,we can't apply ML square /12 formula to it.We have...
Homework Statement
http://session.masteringengineering.com/problemAsset/1127430/5/Probs.2-83_84.jpg
Refer to image for problem.
I have to find the magnitude of the force F3. I'm stuck on where to begin.
Homework Equations
Don't know.
The Attempt at a Solution
I've done...
Homework Statement
Homework Equations
Below
The Attempt at a Solution
So this is a lot like the infinite square well, except periodic. If S is an arc length, then S = \theta R so \frac{d^2}{dS^2} = \frac{1}{R^2}\frac{d^2}{d\theta^2}, which is more convenient to use in the hamiltonian. So...
Homework Statement
let \varphi:\mathbb{Z}[i]\rightarrow \mathbb{Z}_{2} be the map for which \varphi(a+bi)=[a+b]_{2}
a)verify that \varphi is a ring homomorphism and determine its kernel
b) find a Gaussian integer z=a+bi s.t ker\varphi=(a+bi)
c)show that ker\varphi is maximal ideal in...
Hello people,
So i found out the tension in a ring rotating with constant angular velocity (in gravity free space)
Considering a small element of mass dm - tension will provide the centripetal force,
2Tsin(dθ/2) = dmrω^2
sindθ ≈ dθ
dm = m/2πr ds
ds = rdθ
T = (mrω^2)/2πNow, the other method...
Hello ,
I have a
60kW hoisting motor with 600 rpm ,10 pole ,crane duty slip ring motor
When the motor is started for its hoisting operation through resistance motor starts slow and immediately goes into full rpm having no sign of resistance.
Does anyone know what might be the reason...
Homework Statement
A Copper Ring with Radius r and mass m hangs by a thread and rotates with a period T. Ring's coefficient of self inductance is L . What would be a new rotation period of ring, if it was in a horisontal uniform magnetic B field, which is parallel to Ring's plane on a...
I have a quick question. The problem reads:
Prove that there is no integer m such that 3x2+4x + m is a factor of 6x4+50 in Z[x].
Now, Z[x] is not a field. So, the division algorithm for polynomials does not guarantee us a quotient and remainder. When I tried dividing 6x4+50 by 3x2+4x +...
I was looking back at a proof I did a while ago. Suppose na=0 with n≠0 and a≠0. Then n is a multiple of the characteristic. I supposed p < n is our characteristic, then I simply used the divison algorithm (I divided n by p) and the distributive property which lead to the remainder being 0. From...
I know that Young's modulus for a spring is Y= K*L/A
where K: is the stiffness of the spring
L: the original length of the spring
A: the cross sectional area
How does this formula change in the case of continuously distributed springs over a ring chain of radius R and a...
OK I'm super frustrated.. I spent 50min typing the whole text here earlier and click preview only to be told I was logged out. Click back and and all was gone. Damn..
Ok here's the question, AGAIN.
Weight: 1kg
Type: Flywheel, OD is 80mm, ID is 40mm if that matters.
So that's a typical...
Homework Statement
a plastic ring of radius R = 50.4 cm. Two small charged beads are on the ring: Bead 1 of charge +2.00 μC is fixed in place at the left side; bead 2 of charge +6.00 μC can be moved along the ring. The two beads produce a net electric field of magnitude E at the center of the...