In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. For instance, a vector field in the plane can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.
The elements of differential and integral calculus extend naturally to vector fields. When a vector field represents force, the line integral of a vector field represents the work done by a force moving along a path, and under this interpretation conservation of energy is exhibited as a special case of the fundamental theorem of calculus. Vector fields can usefully be thought of as representing the velocity of a moving flow in space, and this physical intuition leads to notions such as the divergence (which represents the rate of change of volume of a flow) and curl (which represents the rotation of a flow).
In coordinates, a vector field on a domain in n-dimensional Euclidean space can be represented as a vector-valued function that associates an n-tuple of real numbers to each point of the domain. This representation of a vector field depends on the coordinate system, and there is a well-defined transformation law in passing from one coordinate system to the other. Vector fields are often discussed on open subsets of Euclidean space, but also make sense on other subsets such as surfaces, where they associate an arrow tangent to the surface at each point (a tangent vector).
More generally, vector fields are defined on differentiable manifolds, which are spaces that look like Euclidean space on small scales, but may have more complicated structure on larger scales. In this setting, a vector field gives a tangent vector at each point of the manifold (that is, a section of the tangent bundle to the manifold). Vector fields are one kind of tensor field.
Is a constant vector field like F = kj conservative? Since the work of F for any closed path is null it seems that F is conservative but for a force to be conservative two conditions must be satisfied:
a) The force must be a function of the position.
b) The circulation of force is zero.
My...
Homework Statement
Homework Equations
$$F = \nabla \phi$$
The Attempt at a Solution
Let's focus on determining why this vector field is conservative. The answer is the following:
[/B]
I get everything till it starts playing with the constant of integration once the straightforward...
Hello everybody.
The Lagrangian for a massive vector field is:
$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{m^2}{2}A_\mu A^\mu$$
The equation of motion is ##\partial_\mu F^{\mu\nu}+m^2A^\nu = 0##
Expanding the EOM with the definition of ##F^{\mu\nu}## the Klein-Gordon equation for...
Hi,
I'm trying to find all the valid surfaces that go through a vector field so that the normal of the surface at any point is equal with the vector from the vector field at the same point.
The vector field is defined by the function:
$$ \hat N(p) = \hat L(p) \cos \theta + \hat R(p)...
In a recent thread, the following was posted regarding the "no hair" theorem for black holes:
In the arxiv paper linked to, it says the following (p. 2, after Theorem 1.1):
"Hawking has shown that in addition to the original, stationary, Killing field, which has to be tangent to the event...
Let us have some localized density of sources, S, in a plane, each of which produces a localized circular vector field. Let us work in polar coordinates. Let the density of sources, S = Aexp(-r^2/a^2) and let each source have circular vector field whose strength is given by exp(-(r-r_i)^2/b^2)...
I'm trying to use LaTeX to graph both the vectors of the electric field around a dipole and the field lines. So far I have a quiver plot of the vector field:
I obtained this by using the code
\begin{tikzpicture}
\def \U{(x-1)/((x-1)^2+y^2)^(3/2) - (x+1)/((x+1)^2+y^2)^(3/2)}
\def...
Homework Statement
For a vector field $$\begin{equation}
X:=y\frac{\partial{}}{\partial{x}} + x\frac{\partial{}}{\partial{y}}
\end{equation}$$
Find it's integral curves and the curve that intersects point $$p = \left(1, 0 \right).$$
Show that $$X(x,y)$$ is tangent to the family of curves: $$x^2...
Consider ##X## and ##Y## two vector fields on ##M ##. Fix ##x## a point in ##M## , and consider the integral
curve of ##X## passing through ##x## . This integral curve is given by the local flow of ##X## , denoted
##\phi _ { t } ( p ) .##
Now consider $$t \mapsto a _ { t } \left( \phi _ { t } (...
If I have a vector field say ## v = e^{z}(y\hat{i}+x\hat{j}) ##, and I want to calculate the divergence. Do I only take partial derivatives with respect to x and y (like so, ## \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} ##) or should I take partial derivatives with respect...
Hello
I have a question if it possible,
Let X a tangantial vector field of a riemannian manifolds M, and f a smooth function define on M.
Is it true that X(exp-f)=-exp(-f).X(f)
And div( exp(-f).X)=exp(-f)〈gradf, X〉+exp(-f)div(X)?
Thank you
Homework Statement
A vector field is pointed along the z-axis,
v → = a/(x^2 + y^2)z .
(a) Find the flux of the vector field
through a rectangle in the xy-plane between a < x < b and
c < y < d .
(b) Do the same through a rectangle in the
yz-plane between a < z < b and c < y < d . (Leave your...
How to draw the following vector field:
F(r) = 1/(r^2)
I know the shape of this vector field and how to draw a vector field in terms of x- and y-components, but I was wondering how to draw a vector field in terms of a vector r, as given above, without knowing its components.
Any advice is much...
Homework Statement
For a left invariant vector field γ(t) = exp(tv). For a gauge transformation t -> t(xμ). Intuitively, what happens to the LIVF in the latter case? Is it just displaced to a different point in spacetime or something else?
Homework EquationsThe Attempt at a Solution
I am trying to improve my understanding of Lie groups and the operations of left multiplication and pushforward.
I have been looking at these notes:
https://math.stackexchange.com/questions/2527648/left-invariant-vector-fields-example...
Homework Statement
Calculate the line integral ° v ⋅ dr along the curve y = x3 in the xy-plane when -1 ≤ x ≤ 2 and v = xy i + x2 j.
Note: Sorry the integral sign doesn't seem to work it just makes a weird dot, looks like a degree sign, ∫.2. The attempt at a solution
I have to write something...
<Moderator's note: Image substituted by text.>
1. Homework Statement
Given the following vector field,
$$
\dfrac{2(x-1)\,dy - 2(y+1)\,dx}{(x-1)^2+(y+1)^2}
$$
how do I integrate :
The integral over the curve x^4 + y^4 = 1
x^4 + y^4 = 11
x^4 + y^4 = 21
x^4 + y^4 = 31
Homework Equations...
Homework Statement
I have to calculate the partial derivative of an arctan function. I have started to calculate it but I wonder if there is any simpler form, because if the simplest solution is this complex then it would make my further calculation pretty painful...
Homework Equations
$$\beta...
On Riemannian manifolds ##\mathcal{M}## the covariant derivative can be used for parallel transport by using the Levi-Civita connection. That is
Let ##\gamma(s)## be a smooth curve, and ##l_0 \in T_p\mathcal{M}## the tangent vector at ##\gamma(s_0)=p##. Then we can parallel transport ##l_0##...
In p.244 of Carroll's "Spacetime and Geometry," the Killing horizon ##\Sigma## of a Killing vector ##\chi## is defined by a null hypersurface on which ##\chi## is null. Then it says this ##\chi## is in fact normal to ## \Sigma## since a null surface cannot have two linearly independent null...
1. Homework Statement
Hi,
I have done part a) by using the expression given for the lie derivative of a vector field and noting that if ##w## is a vector field then so is ##wf## and that was fine.
In order to do part b) I need to use the expression given in the question but looking at a...
Homework Statement
Consider the surface, S, in the xyz-space with the parametric representation: S: (, ) = [cos() , sin() , ] −1/2 ≤ ≤ 1/2 0 ≤ ≤ os().
The surface is placed in a fluid with the...
Homework Statement
The velocity of a solid object rotating about an axis is a field \bar{v} (x,y,z)
Show that \bar{\bigtriangledown }\times \bar{v} = 2\,\bar{\omega }, where \bar{\omega } is the angular velocity.
Homework Equations
3. The Attempt at a Solution [/B]
I tried to use the...
Homework Statement
The stream function Ψ(x,y) = Asin(πnx)*sin(πmy) where m and n are consitive integers and A is a constant, describes circular flow in the region R = {(x,y): 0≤x≤1, 0≤y≤1 }. Graph several streamlines with A=10 and m=n=1 and describe the flow. Explain why the flow is confined to...
Homework Statement
[/B]
I would like to ask for Q5b function G & H
Homework Equations
answer: G: -2pi H: 0
by drawing the vector field
The Attempt at a Solution
the solution is like: by drawing the vector field, vector field of function G is always tangential to the circle in clockwise...
In general relativity we demand that the physical law can be stated as a form which does not depend on the choose of particular coordinate system, So the vector field is defined as a changing object following a regular pattern under the transformation of coordinates. For example, we can define...
Homework Statement
I have been given a changing magnetic field in cylindrical coordinates. The equation is:
\begin{equation}
B(r,\phi,z) = - \frac {B_1} {2} r \hat{r} + (B_0 + B_1z)\hat{z}
\end{equation}
I need to be able to find the magnetic field as a function of x, y, and z.
Homework...
Homework Statement
Use Green's Theorem to find the area of the region between the x-axis and the curve parameterized by r(t)=<t-sin(t), 1-cos(t)>, 0 <= t <= 2pi
Attached is a figure pertaining to the question
Homework Equations
[/B]
The Attempt at a Solution
Using the parameterized...
1. Problem: Consider vector field A##\left( \vec r \right) = \frac {\vec n} {(r^2+a^2)}## representing the electric field of a point charge, however, regularized by adding a in the denominator. Here ##\vec n = \frac {\vec r} r##. Calculate the divergence of this vector field. Show that in the...
I am looks at problems that use the line integrals ##\frac{i}{{2\pi }}\oint_C A ## over a closed loop to evaluate the Chern number ##\frac{i}{{2\pi }}\int_T F ## of a U(1) bundle on a torus . I am looking at two literatures, in the first one the torus is divided like this
then the Chern number...
I'm learning Differential Geometry on my own for my research in ML/AI. I'm reading the book "Gauge fields, knots and gravity" by Baez and Muniain.
An exercise asks to show that "if \phi:M\to N we can push forward a vector field v on M to obtain a vector field (\phi_*v)_q = \phi_*(v_p) whenever...
Homework Statement
I attempted to solve the problem. I would like to know if my work/thought process or even answer is correct, and if not, what I can do to fix it.
I am given:
Calculate the divergence of the vector field :
A=0.2R^(3)∅ sin^2(θ) (R hat+θ hat+ ∅ hat)Homework Equations
[/B]
The...
Hello! I am not sure I understand the idea of vector field on a manifold. The book I read is Geometry, Topology and Physics by Mikio Nakahara. The way this is defined there is: "If a vector is assigned smoothly to each point on M, it is called a vector field over M". Thinking about the 2D...
Homework Statement
I have a curve $$\Psi(t) = \hat h_\alpha$$ where the coordinates are $$\alpha=0, \beta=t$$ and $$\gamma=t$$ in the system. Additionaly
$$x=\sqrt2 ^\alpha \cdot(sin\beta-cos\beta)\cdot \frac{1}{cosh\gamma}$$
$$y=\sqrt2 ^\alpha \cdot(cos\beta+sin\beta)\cdot...
<Moderator's note: Moved from a technical forum and thus no template.>
Calculate flux of the vector field $$F=(-y, x, z^2)$$ through the tetraeder $$T(ABCD)$$ with the corner points $$A= (\frac{3}{2}, 0, 0), B= (0, \frac{\sqrt 3}{2},0), C = (0, -\frac{\sqrt 3}{2},0), D = (\frac{1}{2},0 , \sqrt...
From my drawings it seems to be half of hemisphere. Am I right? How can I solve this task?
Determine the flux of the vector field $$ f=(x,(z+y)e^x,-xz^2)^T$$ through the surface $Q(u,w)$, which is defined in the follwoing way:
1) the two boundaries are given by $$\delta...
Homework Statement
Here are the three problems that i couldn't solve from the book Calculus volume 2 by apostol
10.9 Exercise
2. Find the amount of work done by the force f(x,y)=(x^2-y^2)i+2xyj in moving a particle (in a counter clockwise direction) once around the square bounded by the...
Let's assume the vector field is NOT a gradient field.
Are there any restrictions on what the curl of this vector field can be?
If so, how can I determine a given curl of a vector field can NEVER be a particular vector function?
Homework Statement
F(x,y,z) = xzi
Homework Equations
N/A
The Attempt at a Solution
I just said that x = rcos(θ) so F(r,θ,z) = rcos(θ)z. Is this correct? Beaucse I am also asked to find curl of F in Cartesian coordinates and compare to curl of F in cylindrical coordinates. For Curl of F in...
Homework Statement
Suppose that ##T_i## is the contravariant component of a vector field ##\mathbf{T}## that is constant along the trajectory ##\gamma.## Show that intrinsic derivative is ##0.##
Homework Equations
$$\frac{\delta T_i}{\delta t} = \frac{dT^i}{dt}+V^j\Gamma^i_{jk}T^k$$
The...
Hello,
I try to understand the following demonstration of an author (to proove that dot product is conserved with parallel transport) :
------------------------------------------------------------------------------------------------------------------------
Demonstration :
By definition, the...
I assume this is a simple summation of the normal components of the vector fields at the given points multiplied by dA which in this case would be 1/4.
This is not being accepted as the correct answer. Not sure where I am going wrong. My textbook doesn't discuss estimating surface integrals...
A simple method to find the potential of a conservative vector field defined on a domain ##D## is to calculate the integral
$$U(x,y,z)=\int_{\gamma} F \cdot ds$$
On a curve ##\gamma## that is made of segments parallel to the coordinate axes, that start from a chosen point ##(x_0,y_0,z_0)##.
I...
Let's say we have a vector field that looks similar to this. Assume that the above image is of the x-y plane.
The vector arrows circulate a central axis, you can think of them as tangents to circles.
The field does not depend on the height z.
The lengths of the arrows is a function of their...
Currently working through some exercises introducing myself to quantum field theory, however I'm completely lost with this problem.
Let $$L$$ be a Lagrangian for for a real vector field $$A_\mu$$ with field strength $$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$$ gauge parameter...
i was going through Gauss law and the chapter started with flux of a vector field.i understand it mathematically but not physically,
i have been reading on the net and most common explanation is that it is the amt of "something"(anything) crossing a given surface.fine till here.then i read that...
Homework Statement
when the normal vector n is oriented upward , why the dz/dx and dz/dy is negative ? shouldn't the k = positive , while the dz/dx and dz/dy is also positive?
Homework EquationsThe Attempt at a Solution
is the author wrong ? [/B]
Hi everybody,
Let V(x) a vector field on a manifold ( R^2 in my case), i am looking for a condition on V(x) for which the function x^µ \rightarrow x^µ + V^µ(x) is a diffeomorphism. I read some document speaking about the flow, integral curve for ODE solving but i fail to find a generic...
For a flowing fluid with a constant velocity, will this field be described as conservative vector field? If it is a conservative field, what will be the potential of that field?
This is part of a larger question, but this is the part I am having difficulty with. I have had an attempt, but am not sure where I am making a mistake. Any help would be very, very appreciated.
1. Homework Statement
Let C2 be the part of an ellipse with centre at (4,0), horizontal semi-axis...