Vector Definition and 1000 Threads

  1. D

    Outward flux of a vector field

    My idea is to evaluate it using gauss theorem/divergence theorem. so the divergence would be ## divF = (\cos (2x)2+2y+2-2z ( y+\cos (2x)+3) ) ## is it correct? In this way i'ma able to compute a triple integral on the volume given by the domain ## D = \left\{ (x, y, z) ∈ R^3 : x^2 + y^2 +...
  2. K

    I Vector addition in spin orbit coupling

    Hello! I am reading about spin-orbit coupling in Griffiths book, and at a point he shows an image (section 6.4.1) of the vectors L and S coupled together to give J (figure 6.10) and he says that L and S precess rapidly around J. I am not totally sure I understand this. I know that in the...
  3. J

    Which statements are true given a solution to the system x'=Ax?

    Summary:: Suppose that [x, y] = e^{-3t} [-2, -1] is a solution to the system $x' = Ax$, where A is a matrix with constant entries. Which of the following must be true? a. -3 is an eigenvalue of A. b. [4, 2] is an eigenvector of A. c. The trajectory of this solution in the phase plane with axes...
  4. P

    Plotting the Poynting vector of a radiating electric dipole [matlab]

    I've attached a .txt file of my script for those who want to take a look at it Here's a picture of my vector field at time t = 0 I'm very concerned about this picture because from my understanding the Poynting vector is supposed to point outwards and not loop back around, this looks nothing...
  5. D

    Compute the flux of a vector field through the boundary of a solid

    is it correct if i use Gauss divergence theorem, computing the divergence of the vector filed, that is : div F =2z then parametrising with cylindrical coordinates ##x=rcos\alpha## ##y=rsin\alpha## z=t 1≤r≤2 0≤##\theta##≤2π 0≤t≤4 ##\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4} 2tr \, dt \, dr...
  6. D

    Flux of a vector field through a surface

    Given ##F (x, y, z) = (0, z, y)## and the surface ## \Sigma = (x,y,z)∈R^3 : x=2 y^2 z^2, 0≤y≤2, 0≤z≤1## i have parametrised as follows ##\begin{cases} x=2u^2v^2\\ y=u\\ z=v\\ \end{cases}## now I find the normal vector in the following way ##\begin{vmatrix} i & j & k \\ \frac {\partial x}...
  7. opus

    Mult Variate Calc: Proof for N(t) vector

    I need to prove this using the given equations. $$\vec{N}(t) = \frac{\vec{a}_{v\perp}}{|\vec{a}_{v\perp}|}$$ Here is the entirety of my work up to this point. So far I've wanted to use what I have to find something that is perpendicular to the velocity vector and maybe show that with the dot...
  8. H

    I Group of Wave Vector for k - Action of Space Group

    For a specific wave vector, ##k##, the group of wave vector is defined as all the space group operations that leave ##k## invariant or turn it into ##k+K_m## where ##K_m## is a reciprocal vector. How the translation parts of the space group, ##\tau##, can act on wave vector? Better to say, the...
  9. W

    I Getting Used to Killing Vector Fields: Explained

    I'm struggling to get the hang of killing vectors. I ran across a statement that said energy in special relativity with respect to a time translation Killing field ##\xi^{a}## is: $$E = -P_a\xi^{a}$$ What exactly does that mean? Can someone clarify to me?
  10. M

    I Stokes Theorem: Vector Integral Identity Proof

    Hi, My question pertains to the question in the image attached. My current method: Part (a) of the question was to state what Stokes' theorem was, so I am assuming that this part is using Stokes' Theorem in some way, but I fail to see all the steps. I noted that \nabla \times \vec F = \nabla...
  11. G

    B Understanding Dual Space: Mapping Vector Space to Real Numbers

    I understand that the Dual Space is composed of elements that linearly map the elements of the Vector Space onto Real numbers If my preamble shows that I have understood correctly the basic premise, I have one or two questions that I am trying to work through. So: 1: Is there a one to one...
  12. Decimal

    Magnetic vector potential of a moving current sheet

    Hello, I start by applying the integral for the vector potential ##\vec{A}## using cylindrical coordinates. I define ##r## as the distance to the ##z##-axis. This gives me the following integral,$$\vec{A} = \frac{\mu_0}{4\pi} \sigma_0 v 2 \pi \hat{x} \int_0^{\sqrt{(ct)^2-z^2}}...
  13. Amik

    Is work a vector quantity in physics?

    I am so confused.If F and d are both vector quantity.How come W is a scalar quantity?
  14. G

    I A one dimensional example of divergence: Mystery

    I am trying to understand “divergence” by considering a one-dimensional example of the vector y defined by: . the parabola: y = -1 + x^2 The direction of the vector y will either be to the right ( R) when y is positive or to the Left (L). The gradient = dy/dx = Divergence = Div y = 2 x x...
  15. Wi_N

    Decide a matrix for a vector that goes through various morphs

    vector=(abc) 1. $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & cos(\theta) & -sin(\theta) \\ 0& sin(\theta) & cos(\theta) \end{pmatrix}$$ The rotation part is correct. 2. $$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0& 0 & 0 \end{pmatrix}$$ is wrong apparently how do I do the mirroring? step 3 i can do...
  16. T

    Angular Momentum Vector and Torque Vector

    In studying gyroscopic progression, the angular momentum vector is added to the torque vector. As intuitively these two vectors seem to be qualitatively quite different, how do we know that both vectors are in the same vector field and that they can be manipulated using the rules of vector...
  17. E

    B The use of the dx in the quantum state vector integral

    As a simple example, the probability of measuring the position between x and x + dx is |\psi(x)|^{2} dx since |\psi(x)|^{2} is the probability density. So summing |\psi(x)|^{2} dx between any two points within the boundaries yields the required probability. The integral I'm confused about is...
  18. B

    I Parallel transport of a vector on a sphere

    question1 : if you draw a small circle around the north pole (it should be the same at every points because of the symmetry of the sphere),then it is approximately a flat space ,then we can translate the vector on sphere just like what we have done in flat space(which translate the vector...
  19. R

    Vector potential of current flowing to a point from all directions

    I am having problem with part (b) finding the vector potential. More specifically when writing out the volume integral, $$A = \frac{\mu_0}{4\pi r}\frac{dq}{dt}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{?}\frac{1}{4\pi r'^2} r'^2sin\theta dr'd\theta d\phi$$ How do I integrate ##r'##? The solution...
  20. S

    I Is Joon-Hwi Kim's idea of graphical notation for vector calc any good?

    Here is his paper. I don't see what the big deal about it is. https://arxiv.org/pdf/1911.00892.pdf
  21. M

    What's the integral of a unit vector?

    So I'm trying to figure out the integral of phi hat with respect to phi in cylindrical coordinates. My assumption was that the unit vector would just pass through my integral... is that correct? (I reached this point in life without ever thinking about how vectors go through integrals, and...
  22. RicardoMP

    A Vector and Axial vector currents in QFT

    I'm currently working out quantities that include the vector and axialvector currents ##j^\mu_B(x)=\bar{\psi}(x)\Gamma^\mu_{B,0}\psi(x)## where B stands for V (vector) or A (axialvector). The gamma in the middle is a product of gamma matrices and the psi's are dirac spinors. Therefore on the...
  23. K

    I Is a Vector Field Equal to Zero if Its Contour Integral is Zero?

    I was thinking about this while solving an electrostatics problem. If we have a vector ##\vec V## such that ##\oint \vec V \cdot d\vec A = 0## for any enclosed area, does it imply ##\vec V = \vec 0##?
  24. P

    Expressing this vector integral as a tensor involving the quadrupole

    Before writing out each component I'm going to simplify ##\vec{I}## to the best of my abilities $$\vec{I} = \int \left(\hat{r}\cdot\vec{r'}\right) \vec{r'} \rho\left( \vec{r'} \right)\, d^3r'$$ $$\vec{I} = \hat{r} \cdot \int \vec{r'} \left( x' , y', z' \right) \rho\left( \vec{r'} \right)\...
  25. A

    I Meaning of each member being a unit vector

    Summary: Meaning of each member being a unit vector, and how the products of each tensor can be averaged. Hello! I am struggling with understanding the meaning of "each member is a unit vector": I can see that N would represent the number of samples, and the pointy bracket represents an...
  26. L

    Trouble understanding vector hat notation - Circular Motion

    I'm new to classical mechanics. I've done enough work with vectors to get the basics. But, I'm having trouble understanding the notation on this MIT presentation I found on circular motion: http://web.mit.edu/8.01t/www/materials/Presentations/Presentation_W04D1.pdf On slide 23, for example, I...
  27. F

    I Is force a a bound vector or a free vector?

    Hello Everyone, A small dilemma: is force, which is a vector, a free vector, since it can be slid along its along of application, thus changing its point of application (principle of transmissibility) or a bound vector, since the point of application of the force is crucial for the effect the...
  28. Arman777

    I Radial Vector in Cartesian form

    If I wanted to write ##\hat{r}##in terms of ##\hat{x}##and ##\hat{y}##, is it ##\frac{\hat{x} + \hat{y}}{\sqrt{2}}## ?
  29. jonander

    I General equation for the magnitude of the difference vector

    Hi everyone, While finding the solution for one of my exercises, I found the following answer. I'm seriously questioning if the equations provided in that answer are reversed. According to my understanding, if two vectors ##\vec{S}## and ##\vec{T}## are parallel (same direction) the magnitude...
  30. Matt & Hugh play with a Brick and derive Centripetal Acceleration

    Matt & Hugh play with a Brick and derive Centripetal Acceleration

    Matt and Hugh play with a tennis ball and a brick. Then they do some working out to derive the formula for the centripetal force (a = v^2/r) by differentiati...
  31. dRic2

    Vector calculus identity and electric/magnetic polarization

    I spent a good amount of time thinking about it and in the end I gave up and asked to a friend of mine. He said it's a 1-line-proof: just "integrate by parts" and that's it. I'm not sure you can do that, so instead I tried using the identity: to express the first term on the right-hand side...
  32. Like Tony Stark

    Why do I feel centrifugal acceleration when standing on a revolving ball?

    If a "stand" on the ball, I would feel a centrifugal force, which would be pulling me out of the circle. But in the equation of centrifugal force we have ##\vec r##, which is the vector that goes from the centre of the non inertial frame to the body in motion. But if I'm on the ball, my system...
  33. brotherbobby

    Rotating a given vector about an axis

    The sketch above shows the situation of the problem. Clearly, as the rotation is taking place in the ##y-z## plane, the x-components of the two vectors remain unchanged : ##A_x = B_x##. Let the projection of the vector ##\vec B## on to the y-z plane be vector ##(\vec B)_{yz} = B_y \hat y + B_z...
  34. A

    Total work of a directional wind on a mailman

    Homework Statement: Mike the Mailman takes his oath seriously: "Neither snow, nor rain, nor heat, nor gloom of night stays these courageous couriers from the swift completion of their appointed rounds". Even though a blizzard is raging outside, he goes out to deliver the mail. He makes four...
  35. M

    Vector space - polynomials vs. functions

    As per source # 1 ( link below), when treating polynomials as vectors, we use their coefficients as vector elements, similar to what we do when we create matrices to represent simultaneous equations. However, what I noticed in Source #2 was that, when functions are represented as vectors, the...
  36. M

    Why do we try to find if a subset is a subspace of a vector space?

    I am assuming the set ##V## will have elements like the ones shown below. ## v_{1} = (200, 700, 2) ## ## v_{2} = (250, 800, 3) ## ... 1. What will be the vector space in this situation? 2. Would a subspace mean a subset of V with three or more bathrooms?
  37. E

    B How to obtain state vector for polarised light

    If I'm using the basis vectors |u> and |r> for two polarisation states which are orthogonal in state space, I've seen the representation of a general state oriented at angle theta to the horizontal written as $$\lvert\theta\rangle = \cos(\theta) \lvert r \rangle + \sin(\theta) \lvert u...
  38. KF33

    B How do I differentiate vectors with derivatives and properties?

    Homework Statement: The homework problem is included below, but I am looking at the derivatives of vectors. Homework Equations: I have the properties of derivatives below, but not sure they help me here...
  39. J

    Vector Cross Product With Its Curl

    Starting with LHS: êi εijk Aj (∇xA)k êi εijk εlmk Aj (d/dxl) Am (δil δjm - δim δjl) Aj (d/dxl) Am êi δil δjm Aj (d/dxl) Am êi - δim δjl Aj (d/dxl) Am êi Aj (d/dxi) Aj êi - Aj (d/dxj) Ai êi At this point, the LHS should equal the RHS in the problem statement, but I have no clue where...
  40. N

    Vector and scalar potentials for an EM plane wave in a vacuum

    Lorentz gauge: ∇⋅A = -μ0ε0∂V/∂t Gauss's law: -∇2V + μ0ε0∂2V/∂t2 = ρ/ε0 Ampere-Maxwell equation: -∇2A + μ0ε0∂2A/∂t2 = μ0J I started with the hint, E = -∇V - ∂A/∂t and set V = 0, and ended up with E0 ei(kz-ωt) x_hat = - ∂A/∂t mult. both sides by ∂t then integrate to get A = -i(E0/ω)ei(kz-ωt)...
  41. M

    Helicoidal movement: acceleration vector, arc length, radius of curvature

    I have tried to solve it and I would like a confirmation, correction or if something else is suggested... :) Helicoidal movement
  42. S

    I Showing direct sum of subspaces equals vector space

    If one shows that ##U\cap V=\{\textbf{0}\}##, which is easily shown, would that also imply ##\mathbf{R}^3=U \bigoplus V##? Or does one need to show that ##\mathbf{R}^3=U+V##? If yes, how? By defining say ##x_1'=x_1+t,x_2'=x_2+t,x_3'=x_3+2t## and hence any ##\textbf{x}=(x_1',x_2',x_3') \in...
  43. H

    MATLAB Vectorize MATLAB Matrices in \mathbf{v} for Spherical Heat Equation

    Suppose I have a vector of matrices: \mathbf{v}=(A_{1},\cdots,A_{n}) How would I vectorise this in MATLAB? This question comes from a requirement to compute a Greens function for the spherical heat equation. I can easily compute a single function for a single position in space, but can I do...
  44. D

    I Lorentz transformation of derivative and vector field

    I'm currently watching lecture videos on QFT by David Tong. He is going over lorentz invariance and classical field theory. In his lecture notes he has, $$(\partial_\mu\phi)(x) \rightarrow (\Lambda^{-1})^\nu_\mu(\partial_\nu \phi)(y)$$, where ##y = \Lambda^{-1}x##. He mentions he uses active...
  45. M

    Question on Calculating Coulomb force in VECTOR FORM

    The only thing tripping me up here is that the answer needs to be in vector form. If the question was asking for the scalar form, then I would just find the distance between the charges (plot the charges according to their vector coordinates, then use pythagorean theorem to find the distance...
  46. Pencilvester

    I Pullback of Vector Field in Relativity: Restrictions?

    Since coordinate transformations should be one-to-one and therefore invertible, wouldn’t there be no restriction on pushforwarding or pullbacking whatever fields we feel like (within the context of coordinate transformations)?
  47. P

    Stuck on a few Vector homework problems

    I'm stuck on a few Vector homework problems. I don't quite understand how to write vectors A+B and A-B for questions 1b and 2b. I tried starting with calculating the magnitude for vector A+B on question 1b and then followed by finding theta, but I'm not sure if that's what I'm supposed to do...
Back
Top