Vector Definition and 1000 Threads

  1. Adesh

    I'm not getting the curl of vector potential equal to magnetic field

    In this image of Introduction to Electrodynamics by Griffiths . we have calculated the vector potential as ##\mathbf A = \frac{\mu_0 ~n~I}{2}s \hat{\phi}##. I tried taking its curl but didn't get ##\mathbf B = \mu_0~n~I \hat{z}##. In this thread, I have calculated it like this ...
  2. Adesh

    How to find the curl of a vector field which points in the theta direction?

    I have a vector field which is originallly written as $$ \mathbf A = \frac{\mu_0~n~I~r}{2} ~\hat \phi$$ and I translated it like this $$\mathbf A = 0 ~\hat{r},~~ \frac{\mu_0 ~n~I~r}{2} ~\hat{\phi} , ~~0 ~\hat{\theta}$$(##r## is the distance from origin, ##\phi## is azimuthal angle and ##\theta##...
  3. T

    Vector Field Transformation to Spherical Coordinates

    I am trying to solve the following problem from my textbook: Formulate the vector field $$ \mathbf{\overrightarrow{a}} = x_{3}\mathbf{\hat{e_{1}}} + 2x_{1}\mathbf{\hat{e_{2}}} + x_{2}\mathbf{\hat{e_{3}}} $$ in spherical coordinates.My solution is the following: For the unit vectors I use the...
  4. D

    MHB Orthogonal Complement of Polynomial Subspace?

    If this question is in the wrong forum please let me know where to go. For p, the vector space of polynomials to the form ax'2+bx+c. p(x), q(x)=p(-1) 1(-1)+p(0), q(0)+p(1) q(1), Assume that this is an inner product. Let W be the subspace spanned by . a) Describe the elements of b) Give a basis...
  5. Arman777

    I Understanding Relation of Proper & Vector Quantities

    Let me define the letters before because they will be confusing: ##x##: 3-vector ##v##: 3-velocity ##a##: 3-acceleration ##X##: 4-vector ##U##: 4-velocity ##A##: 4-acceleration ##\alpha##: proper acceleration ##u##: proper velocity One can define the proper time as, $$d\tau = \sqrt{1 -...
  6. C

    Parameterize Radial Vector of Electric Field due to Spherical Shell

    Homework statement: Find the electric field a distance z from the center of a spherical shell of radius R that carries a uniform charge density σ. Relevant Equations: Gauss' Law $$\vec{E}=k\int\frac{\sigma}{r^2}\hat{r}da$$ My Attempt: By using the spherical symmetry, it is fairly obvious...
  7. Terrycho

    Divergence of a position vector in spherical coordinates

    I know the divergence of any position vectors in spherical coordinates is just simply 3, which represents their dimension. But there's a little thing that confuses me. The vector field of A is written as follows, , and the divergence of a vector field A in spherical coordinates are written as...
  8. E

    I Velocity Vector Transformation from Cartesian to Spherical Coordinates

    Hi all, I can't find a single thing online that translates a cartesian velocity vector directly to spherical vector coordinate system. If I am given a cartesian point in space with a cartesian vector velocity and I want to convert it straight to spherical coordinates without the extra steps of...
  9. W

    Simple Vector Boat Problem, Conceptual Misunderstanding

    Hi there, I have attached the problem I'm working with. I believe I must have the wrong idea of how to approach this question. My issue is with the stated width and calculating how long the boat will take to cross the river. It's using width; 110m and the boats velocity to determine how long...
  10. Athenian

    Finding the Rotation Matrix for Vector Alignment

    Below is the attempted solution of a tutor. However, I do question his solution method. Therefore, I would sincerely appreciate it if anyone could tell me what is going on with the below solution. First off, the rotation of the matrix could be expressed as below: $$G = \begin{pmatrix} AB & -||A...
  11. B

    I Proving Convexity of the Set X = {(x, y) E R^2; ax + by <= c} in R^2

    This exercise is located in the vector space chapter of my book that's why I am posting it here. Recently started with this kind of exercise, proof like exercises and I am a little bit lost Proof that given a, b, c real numbers, the set X = {(x, y) E R^2; ax + by <= c} ´is convex at R^2 the...
  12. Arman777

    Vector Divergence: Are the Expressions True?

    Do I have to write something like, $$\nabla' \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x'^m} + \frac{\partial J^m(t_r)}{\partial x'^m}$$ $$\nabla \cdot \vec{J} = \frac{\partial J^m(r')}{\partial x^m} + \frac{\partial J^m(t_r)}{\partial x^m} = \frac{\partial J^m(t_r)}{\partial x^m}$$...
  13. G

    Line integral where a vector field is given in cylindrical coordinates

    What I've done so far: From the problem we know that the curve c is a half-circle with radius 1 with its center at (x,y) = (0, 1). We can rewrite x = r cos t and y = 1 + r sin t, where r = 1 and 0<t<pi. z stays the same, so z=z. We can then write l(t) = [x(t), y(t), z ] and solve for dl/dt...
  14. vanhees71

    A Affine Spaces and Vector Spaces

    [Moderator's Note: Spun off from previous thread due to increase in discussion level to "A" and going well beyond the original thread's topic.] A vector space has no origin to begin with ;-)). An affine space is a set of points and a vector space ##(M,V)##. Then you have a set of axioms which...
  15. J

    What is the orientation of the vector of friction?

    Hi, It is my first message :) I hope you are all fine and safe in these difficult days ! I cannot find the good orientation of the vector of friction. A circle moves in translation to the right and in the same time the wall rotates around A0. A0 is fixed to the ground. There is always the...
  16. forkosh

    A Exploring Basis Vector Relationships in Incompatible Propositions

    If propositions ##p,q\in{\mathscr L}_{\mathcal H}## (i.e., the lattice of subspaces of ##\mathcal H##) are incompatible, then ##\hat p\hat q\neq\hat q\hat p##. But since it's a lattice, there exists a unique glb ##p\wedge q=q\wedge p##. How are they mathematically related? In particular, I...
  17. T

    Subspace of vectors orthogonal to an arbitrary vector.

    The proof that the set is a subspace is easy. What I don't get about this exercise is the dimension of the subspace. Why is the dimension of the subspace ##n-1##? I really don't have a clue on how to go through this.
  18. W

    B Measurement of an unknown velocity vector of a closed space

    Hi I found this paper on the measurement of unknown velocity vector of a closed space. Does it mean that it is possible to measure the unknown velocity vector of a closed space ? Can someone explain it to me
  19. V

    Finding the y-component of a velocity vector

    The first thing I did, was to find the equations for player A (p) and ball's (b) path (for each i and j component I used the equation I wrote in the relevant equations) and then I found the derivative of both equations so I could have the velocity: $$\vec{r}_p(t)=(6t^2+3t)\hat{i}+20\hat{j}...
  20. V

    Determining whether a set is a vector space

    Summary:: the set of arrays of real numbers (a11, a21, a12, a22), addition and scalar multiplication defined by ; determine whether the set is a vector space; associative law Question: determine whether the set is a vector space. The answer in the solution books I found online says that...
  21. M

    Gauss' Theorem - Net Flux Out - Comparing two vector Fields

    Hi, I just have a quick question about a problem involving Gauss' Theorem. Question: Vector field F = \begin{pmatrix} x^2 \\ 2y^2 \\ 3z \end{pmatrix} has net out flux of 4 \pi for a unit sphere centred at the origin (calculated in earlier part of question). If we are now given a vector...
  22. D

    Space vector modulation, motor control, implementation question

    Hello, I am after some help to try and understand SVM implementation is a micro that controls a motor. As I understand it one of the advantages of using space vector modulation over sinusoidal PWM modulation in motor control is that it can control the phase voltages such that the line-to-line...
  23. M

    The vector sum of the electric forces exerted on a particle

    r_{13}=r_{23}=\sqrt{(30*10^{-3})^2+(90*10^{-3})^2}=\sqrt{9*10^{-3}}\\ F^E_{13}=F^E_{23}=9E9\cdot\frac{5*10^{-9}\cdot3*10^{-9}}{9*10^{-3}}=1.5*10^{-5}\\ \theta=tan^{-1}(\frac{90*10^{-3}}{30*10^{-3}})=71.565\,degrees\\ \vec{F}^E_{13}=<F^E_{13}cos\theta, F^E_{13}sin\theta> = <4.743*10^{-6}...
  24. Tony Hau

    How to find the length of a vector expressed in polar coordinates?

    The velocity of a particle below is expressed in polar coordinates, with bases e r and e theta. I know that the length of a vector expressed in i,j,k is the square of its components. But here er and e theta are not i,j,k. Plus they are changing as well. Can someone help convince me that the...
  25. Eclair_de_XII

    B Rotating a point in 3-space through an angle about some vector

    Denote ##v=(1,2,3)^T##, ##\theta=\arctan(2)##, and ##\phi=\arctan(\frac{3}{\sqrt{5}})##.The way that I attempted this was by performing the following steps: (1) Rotate ##v## about the z-axis ##-\theta## degrees, while keeping the z-coordinate constant. (2) Rotate ##v## about the y-axis...
  26. L

    A Solve Conditions to Preserve Bondi Gauge Vector Field

    I'm going through the "Advanced Lectures on General Relativity" by G. Compère and got stuck with solving one set of conditions on the subject of asymptotic flatness. Let ##(M,g)## be ##4##-dimensional spacetime and ##(u,r,x^A)## be a chart such that the coordinate expression of ##g## is in Bondi...
  27. Aemmel

    Finding killing vector fields of specific spacetime

    I have been at this exercise for the past two days now, and I finally decided to get some help. I am learning General Relativity using Carrolls Spacetime and Geometry on my own, so I can't really ask a tutor or something. I think I have a solution, but I am really unsure about it and I found 6...
  28. L

    Gauge choice for a magnetic vector potential

    How do we verify whether a condition on the magnetic vector potential A constitutes a possible gauge choice ? Specifically, could a relation in the form A x F(r,t) be a gauge , where F is an arbitrary vector field?
  29. C

    Potential vector (A) of a disk with a surface current

    Hi, I've been stuck for a long time with this exercise. I am not able to calculate the potential vector, since I do not know very well how to pose the itegral, or how to decompose the disk to facilitate the resolution of the problem. I know that because the potential vector must be parallel to...
  30. T

    Expressing the magnetic vector potential A-field in terms of the B-field

    We have a retarded magnetic vector potential ##\mathbf{A}(\mathbf{r},t) = \dfrac{\mu_0}{4\pi} \int \dfrac{\mathbf{J}(\mathbf{r}',t_r)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}^3 \mathbf{r}'## And its curl, ##\mathbf{B}(\mathbf{r}, t) = \frac{\mu_0}{4 \pi} \int \left[\frac{\mathbf{J}(\mathbf{r}'...
  31. K

    I Vector calculus identity format question

    I know there is an identity involving the Laplacian that is like ##\nabla^2 \vec A = \nabla^2 A## where ##\vec A## is a vector and ##A## is its magnitude, but can't remember the correct form. Does anyone knows it?
  32. T

    Vector field equality Curl Proof of Moving Magnet & Conductor Problem

    The moving magnet and conductor problem is an intriguing early 20th century electromagnetics scenario famously cited by Einstein in his seminal 1905 special relativity paper. In the magnet's frame, there's the vector field (v × B), the velocity of the ring conductor crossed with the B-field of...
  33. Avatrin

    How Can I Learn Seeding and Visualization Techniques for Vector Fields?

    Summary:: Seeding and visualization techniques Hi I am looking for resources where I can learn the following: Seeding strategies and algorithms for vector fields (texture-based, geometry, topological) Different techniques for visualizing vector fields (streamlines, glyph-based, LIC etc)
  34. Decimal

    A Question about the derivation of the tangent vector on a manifold

    I am trying to understand the following derivation in my lecture notes. Given an n-dimensional manifold ##M## and a parametrized curve ##\gamma : (-\epsilon, \epsilon) \rightarrow M : t \mapsto \gamma(t)##, with ##\gamma(0) = \mathbf{P} \in M##. Also define an arbitrary (dummy) scalar field...
  35. H

    Magnetic field vector using F = qV * B

    Hi, I'm trying to find the magnetic field B using F = qV * B. I have F = (3i + j + 2k) N V = (-i +3j) * 10^6 m/s q = -2 *10^6 C Bx = 0 I don't know how to resolve a 3 dimensional vector equation. B = F/qV makes not sense for me.
  36. Alexanddros81

    Vector Mechanics — Double Gear Rolling on a Rack

    Hi! My first question: How does he get the equation ##\frac {x_A} {2πr_1} = -\frac {θ} {2π}## ?
  37. bagasme

    B Derivation of Cosine and Sine Method of Vector Sum

    Hello all, In high school physics, the magnitude sum of vector addition can be found by cosine rule: $$\vec {R^2} = \vec {F^2_1} + \vec {F^2_2} + 2 \cdot \vec F_1 \cdot \vec F_2 \cdot cos ~ \alpha$$ and its angle are calculated by sine rule: $$\frac {\vec R} {sin ~ \alpha} = \frac {\vec F_1}...
  38. M

    MHB How Can I Use GeoGebra to Calculate Vector Lengths and Projections?

    Hey! :o We have the vectors $v=i+j+2k=(1,1,2)$ and $u=-i-k=(-1,0,-1)$. I have calculated the following: \begin{align*}&|v|=\sqrt{1^2+1^2+2^2}=\sqrt{1+1+4}=\sqrt{6} \\ &|u|=\sqrt{(-1)^2+0^2+(-1)^2}=\sqrt{1+0+1}=\sqrt{2} \\ &v\cdot u=(1,1,2)\cdot (-1,0,-1)=1\cdot (-1)+1\cdot 0+2\cdot...
  39. AzureSekki

    Vector resolution onto axes not at right-angles

    Summary:: I'm quite stuck on this problem i don't know what I am going to use formula to solve this one This is the given I am not sure if this is a resolution problem or it involve parallelogram law
  40. D

    I Sufficient condition for a vector field to be conservative

    Homework Statement:: F is not conservative because D is not simply connected Relevant Equations:: Theory Having a set which is not simply connected is a sufficient conditiond for a vector field to be not conservative?
  41. K

    I Energy Component 0 of 4 Momentum Vector P

    The energy is the 0-th component of the four momentum vector ##p^\alpha##. How is called the component ##p_0 = g_{0\alpha}p^\alpha##?
  42. andylatham82

    B What does the scalar product of two displacements represent?

    Hi, This feels like such a stupid question, but it's bugging me. Two displacements can be represented with two vectors. Let's say their magnitudes are expressed in metres. The scalar (dot) product of the two vectors results in a value with the units of square metres, which must be an area. Can...
  43. D

    Work of a vector field along a curve

    let ##f : R^3 → R## the function ##f(x,y,z)=(\frac {x^3} {3} +y^2 z)## let ##\gamma## :[0,## \pi ##] ##\rightarrow## ##R^3## the curve ##\gamma (t)##(cos t, t cos t, t + sin t) oriented in the direction of increasing t. The work along ##\gamma## of the vector field F=##\nabla f## is: what i...
Back
Top