Wave Definition and 999 Threads

In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities, sometimes as described by a wave equation. In physical waves, at least two field quantities in the wave medium are involved. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.
The types of waves most commonly studied in classical physics are mechanical and electromagnetic. In a mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves, gravity waves, surface waves, string vibrations (standing waves), and vortices. In an electromagnetic wave (such as light), coupling between the electric and magnetic fields which sustains propagation of a wave involving these fields according to Maxwell's equations. Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent). Electromagnetic waves, according to their frequencies (or wavelengths) have more specific designations including radio waves, infrared radiation, terahertz waves, visible light, ultraviolet radiation, X-rays and gamma rays.
Other types of waves include gravitational waves, which are disturbances in spacetime that propagate according to general relativity; heat diffusion waves; plasma waves that combine mechanical deformations and electromagnetic fields; reaction-diffusion waves, such as in the Belousov–Zhabotinsky reaction; and many more.
Mechanical and electromagnetic waves transfer energy, momentum, and information, but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals. On the other hand, some waves have envelopes which do not move at all such as standing waves (which are fundamental to music) and hydraulic jumps. Some, like the probability waves of quantum mechanics, may be completely static.
A physical wave is almost always confined to some finite region of space, called its domain. For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains.
A plane wave is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency. In linear media, complicated waves can generally be decomposed as the sum of many sinusoidal plane waves having different directions of propagation and/or different frequencies. A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal if those vectors are exactly in the propagation direction. Mechanical waves include both transverse and longitudinal waves; on the other hand electromagnetic plane waves are strictly transverse while sound waves in fluids (such as air) can only be longitudinal. That physical direction of an oscillating field relative to the propagation direction is also referred to as the wave's polarization which can be an important attribute for waves having more than one single possible polarization.

View More On Wikipedia.org
  1. manases

    I Pilot Wave Theory: Against the Rest of Quantum Mechanics?

    Hi, I was reading about the Pilot Wave theory. I also found this vid: Is the Pilot Wave theory against most of the other interpretations of QM? And what are the main things one needs to accept? - In pilot wave theory, --- we have to accept a medium of unknown particles. ---...
  2. manases

    I Investigations to find the cause of wave collapse?

    Hi, I am very new to this, but I can't help to ask the question to which I cannot find the answer on google. Was the process of investigating of wave collapse - split into sections - to identify which section produces the collapse? I am a web programmer and sometimes this is a method I employ...
  3. R

    I How do you normalize this wave function?

    I have a basic question in elementary quantum mechanics: Consider the Hamiltonian $$H = -\frac{\hbar^2}{2m}\partial^2_x - V_0 \delta(x),$$ where ##\delta(x)## is the Dirac function. The eigen wave functions can have an odd or even parity under inversion. Amongst the even-parity wave functions...
  4. O

    A Inhomogeneous wave equation: RHS orthogonal to homogeneous solutions

    Hi, I've been reading Brillouin's 'Wave Propagation in Periodic Media'. About the following equation $$\nabla^2u_1+\frac{\omega^2_0}{V_0}u_1 = R(r)$$ Brillouin states that "it is well known that such an equation possesses a finite solution only if the right-hand term is orthogonal to all...
  5. J

    Question about an Eqn. in Shankar - wave function probability

    I don't see why it is not ##P(\omega)\propto |\langle \psi | \mathbb{P}_{\omega}|\psi\rangle |^2.## After all, the wavefunction ends up collapsing from ##|\psi\rangle## to ##\mathbb{P}_{\omega}|\psi\rangle.##
  6. C

    How Is the Energy Density of EM Waves Related to Capacitors and Inductors?

    The energy density of an EM wave is given as (1/2) ϵ E^2 + (1/(2μ)) B^2. This is derived from the energy density of the electric and magnetic fields of capacitors and inductors, respectively. But why should the energy density of the fields of capacitors and inductors be the same as that of...
  7. E

    B Wave equation with a slight alteration

    I want to find the particular solution to the differential equation$$g(L-x) \frac{\partial^2 y}{\partial x^2} = \frac{\partial^2 y}{\partial t^2}$$with the boundary condition ##y(0) = 0## for all ##t##. If the coefficient of ##\frac{\partial^2 y}{\partial x^2}## were constant then it could be...
  8. wolfy

    B When the wave function collapses, how long is it collasped?

    When wave function collapses how long is it collasped... Shooting electrons at a double slit and observing the electrons before they reach the 2 slits collasped the wave function...so is its behavior particle like forever? Quantum mechanics is simple however wrapping ones head around it is...
  9. A

    Light as an electromagnetic wave

    light is electromagnetic wave ,so does it also have magnetic and electric field,like all others waves(micro,gama,xray,radio waves etc..)? i never heard that some one talk about light in sense of magnetic and electric field.. if it has ,why than compass don't response to light?
  10. anuttarasammyak

    Energy transfer and conservation cases for pendulum motion and EM wave

    Let me ask a very primitive question. To and fro motion of pendulum under gravity tells us potential energy + kinetic energy = const. At the top points potential energy: max kinetic energy :0 At the bottom point potential energy: 0 kinetic energy :max EM wave is usually illustrated as...
  11. A

    I How to measure a 21 cm EM wave if it is Doppler shifted?

    we know that all emission from asctrophysical context is doppler shifted. So, how to make sure the doppler shifted 21 cm not contaminated by some other emission?
  12. H

    I Does quantum theory describe light as a wave?

    Hello! I recently had a discussion with a person who's well-read on quantum physics and I was suprised by his claim that "light is in no sense regarded as a wave" in quantum mechanics. His support for this claim was that there are no wave crest or wave trough, there is nothing moving. What...
  13. Terrycho

    I The wave function in the finite square well

    Hello! I have been recently studying Quantum mechanics alone and I've just got this question. If the potential function V(x) is an even function, then the time-independent wave function can always be taken to be either even or odd. However, I found one case that this theorem is not applied...
  14. G

    Why is the power of a particle on a wave zero in a stationary wave?

    I've marked the right answers. They mainly indicate at power carried by the particles being zero, and here is my doubt- why should it be zero? Shouldn't it have some definite value? I do understand that the kinetic energy is max at the y=0 and potential energy is max at y=A, but I don't know...
  15. Athenian

    Transforming E^2(x,t) to A_y^2 + A_z^2 in Harmonic Waves

    To begin with, I am trying to understand how does ##E^2 (x,t)## transform to ##A_y^2 + A_z^2##. And, noting that the already established equation of ##E^2 = E_y^2 + E_z^2##, I would assume that ##E^2 (x,t)## somehow ends up to being ##A_y^2 + A_z^2##. However, noting that ##E^2 = (A_y...
  16. P

    B Animation of a standing wave formed by components from a free end

    This is not a homework question, it is for my understanding so please do not answer this question with a question. I have found this great animated gif but it appears to be for a fixed end (notice wave inversions at the end). Has anyone seen a similar one for a free end? Many Thanks
  17. I

    Wave propagation - Oblique Incidence

    Summary:: A plane wave incident upon a planar surface - determining polarization, angle of incidence etc. 𝐄̃i = 𝐲̂20𝑒−𝑗(3𝑥+4𝑧) [V. m−1 ] is incident upon the planar surface of a dielectric material, with εr = 4, occupying the halfspace z ≥ 0. a) What is the polarisation of the incident wave...
  18. P

    Conclusion about wave propagation in SR given L dot S = N = L' dot S'

    The problem I am having is "What can you conclude about wave prorogation in SR given the results?". The best I can come up with is that the number of wave planes N crossing a section of spacetime in either frame is the same. The section may be bigger or smaller depending on which frame you're in...
  19. therealist

    How do I find the frequency, speed and direction of a wave

    Hey I am trying to learn how waves move in time and I am not sure how to solve the following question. Can someone please guide me through it.
  20. T

    B Complete set of solutions to the wave equation

    I am solving the wave equation in z,t with separation of variables. As I understand it, Z(z) = acos(kz) + bsin(kz) is a complete solution for the z part. Likewise T(t) = ccos(ω t) + dsin(ωt) forms a complete solution for the t part. So what exactly is ZT = [acos(kz) + bsin(kz)][ccos(ωt) +...
  21. D

    Normal incidence of a plane polarized wave through multiple mediums

    Hello everybody, I have to find the amplitudes of a wave that goes through 4 different mediums in terms of ##E_0##, suffering reflection in the first three but not the last one. I calculated the corresponding reflection indexes of the three mediums (all of them real). Following calculations, I...
  22. Erik Ayer

    I Interference of a fat laser beam: Tilting wave peaks

    I want to split a fat laser beam and interfere it with itself, kind of like this: The very obvious problem is that the wave peaks shown as black lines would be a whole lot closer together, so the interference fringes would be sub-microscopic. If a couple of glass wedges - oddly-shaped prisms...
  23. J

    A Amplitude of a stationary wave

    Does each point in a stationary wave change its displacement and hence it's amplitude? If yes, why is this so? However, why does the amplitude at the node and antinode remains zero and maximum respectively? Does the above have to do with the fact that all the formation of a stationary wave is...
  24. Athenian

    One-Dimensional Wave Equation & Steady-State Temperature Distribution

    To begin with, I can first let ##T(x,y) = X(x) Y(y)## to be the given solution. With this, I can then continue by writing: $$Y \frac{\partial^2 X}{\partial x^2} + X \frac{\partial^2 Y}{\partial y^2} = 0$$ $$\Longrightarrow \frac{1}{X} \frac{\partial ^2 X}{\partial x^2} + \frac{1}{Y}...
  25. Zouatine

    What units for the wave function of a string?

    hello , hope all of you are doing well , i have question about the unit of the function of waves of string fixed in both boundary , the function of waves is function of two variables x and t , so it's function describe the displacement in function of place and time , Ψ(x,t)=φ(x)*sin(ωt+α)...
  26. S

    I Splitting of a one-particle wave function

    Hello all, I am a newcomer here. Not a physicist, just an enthusiast. ;) I was thinking whether it is possible to separate a one-particle wave function into two, "completely disjoint" parts. The following thought experiment explains better what I am thinking about. Let us suppose, that there...
  27. jeremiahrose99

    I Solution to the 1D wave equation for a finite length plane wave tube

    Hi there! This is my first post here - glad to be involved with what seems like a great community! I'm trying to understand the acoustics of a finite plane-wave tube terminated by arbitrary impedances at both ends. So far all of the treatments I've managed seem only to address a different...
  28. CrosisBH

    Computing the wave function of a square potential

    The book's procedure for the "shooting method" The point of this program is to compute a wave function and to try and home in on the ground eigenvalue energy, which i should expect pi^2 / 8 = 1.2337... This is my program (written in python) import matplotlib.pyplot as plt import numpy as...
  29. M_Abubakr

    Wave dispersion in 2D Unit cell subjected to a periodic boundary

    How do I get the wave dispersion for a 2D continuum unit cell subjected to a periodic boundary which is excited longitudinally? I'll be applying forces in ABAQUS with varying frequencies. I have come across Blochs theorem but I can't find any application of it in continuous systems. Every...
  30. Q

    Action of the time reversal operator on the QM wave equation

    Applying the time reversal operator to the plane wave equation: Ψ = exp [i (kx - Et)] T[Ψ ] = T{exp [i (kx - Et)]} = exp [i (kx + Et)] This looks straightforward as I have simply applied the 'relevant equation' however my doubt is in relation to the possible action of operator T on the i...
  31. Zack K

    Infinite Square Well with polynomial wave function

    Some questions: Why is this even a valid wave function? I thought that a wave function had to approach zero as x goes to +/- infinity in all of space. Unless all of space just means the bounds of the square well. Since we have no complex components. I am guessing that the ##\psi *=\psi##. If...
  32. hilbert2

    A Can Bloch Waves Reveal Periodic Potentials in Quantum Mechanics?

    I was thinking about a problem I had considered a long time ago in some thread, finding an example of a wave function ##\displaystyle \psi (x) =e^{iax}\phi (x)## with ##\displaystyle\phi (x)## being periodic with period ##\displaystyle L## and the corresponding Schrödinger equation...
  33. andrew chen

    Questions on Plane Wave Superposition

    First, I have a question about supereposition of the plane waves - whether the direction of all such plane wave is same, i.e. ##\vec{n}## is in some direction. If not, I think it would be ##\vec{E}(\vec{x}, t)=\int\mathbf{\mathfrak{E}}(\vec{k}')e^{i\vec{k}'\cdot\vec{x}-i\omega t}d^3k##. Besides...
  34. M

    Wave Equation: d'Alembert solution -- semi-infinite string with a fixed end

    Hi, I was trying to get some practice with the wave equation and am struggling to solve the problem below. I am unsure of how to proceed in this situation. My attempt: So we are told that the string is held at rest, so we only need to think about the displacement conditions for the wave...
  35. TopologyisGeometry

    Plotting the radial wave function of Deuteron in a finite well

    To plot ##u(r)## we need to find the solutions for each region. Which is in the relevant equations part. Now, I have to do this numerically. Using python 3.7 I made an ##u## which is filled with zeros and a for loop with if/elseif statement, basically telling it to plot values for whenever...
  36. Z

    Spatial Wave function of two indistinguishable particles

    Hi, I just need someone to check over my work. I am having trouble with the next part of this question and I just wanted to check that this part was correct first. I have two particles in an infinite square well (walls at x=0 and x=L). I need write an expression for the spatial wave...
  37. B

    Phase difference between 2 points on a wave

    So to do this problem I need the relevant formula for phase difference which is this: I first need to find wavelength and this is lambda = velocity/frequency So lambda = 257/641 = 0.40093603744 m Hence phase difference (in radians) = 2pi * (2/0.40093603744) = 31.3 rads My concern is that...
  38. Y

    Question about travelling wave equation

    There is a multiple choices question about traveling wave in my book. Based on the graphic, if T = 2s, the wave equation is ... My answer : ω = 2π/T = 2π/2 = π k = 2π/λ = 2π/4 = 0,5π → in my country, we use comma (,) for point (.) y = ±A sin (ωt - kx) y = -0,5 sin (πt - 0,5πx) y = -0,5 sin...
  39. DarkMattrHole

    I Is the inertia of a massive object the result of gravity wave generation?

    Hi all. I just watched a great video on gravity wave 'telescopes'. So i have been wondering if any of my intuitive hunches are right about gravity waves. Accelerated masses generate gravity waves that dissipate energy.. So let's say i turn my rocket ship engine on while sitting in deep...
  40. M

    Engineering Power Loss Definition in a Damped Wave Equation (Skin Depth Problem}

    Hi, So the main question is: How to deal with power loss in E-M waves numerically when we are given power loss in dB's? The context is that we are dealing with the damped wave equation: \nabla ^ 2 \vec E = \mu \sigma \frac{\partial \vec E}{\partial t} + \mu \epsilon \frac{\partial ^ 2 \vec...
  41. Miles123K

    Wave behavior across two semi-infinite membranes with a special boundary

    Since the membrane doesn't break, the wave is continuous at ##x=0## such that ##\psi_{-}(0,y,t) = \psi_{+}(0,y,t)## ##A e^{i(k \cos(\theta)x + k \sin(\theta)y - \omega t)} = A e^{i(k' \sin(\theta ') y- \omega t)}## Which is only true when ## k' \sin(\theta ') = k \sin(\theta) ##. From the...
  42. mgkii

    EM Wave - basic question on energy conservation in a wave

    I've searched threads and can't find easy explanation - sorry if I'm missing something basic / have a basic understanding error! In the classic picture of an EM wave with the Electric and Magnetic components oscillating at 90 degrees to each other, both components cross the middle axis at the...
  43. Fra Ser Mur Chie

    What is the relationship between wave speed and frequency?

    Frequency nU = W/2pi = 287.6/6.28 = 45.796 = 45.80 Speed C = nU * I = 45.80 * 186.9 = 8560 m/s
  44. S

    Equation for the propagation of the crest of a wave

    I am not sure what is meant by "equation of propagation of crest" but this is my attempt: First, I find the velocity of wave: v = ω / k = 0.5 / 0.25 = 2 m/s Then I calculate wavelength: k = 2π / λ λ = 4 m I imagine the crests will move to the right along with the wave so I try to use equation...
  45. U

    When is the propagation of an EM wave not reversible?

    By reversibility, if we turn the direction of the light propagation by 180 degrees, then the new propagation path follows the old propagation path. I suspect that when there is diffraction, the light propagation is not reversible?
  46. Leonardo Bittar

    I Why do we observe an electron both as a wave and as a particle ?

    Maybe because when you don't observe it, the Schrödinger equation predicts the totality of interactions (paths) of the electron over an infinite time, all the paths it can take ( forming a wave like function ) which is actually all the paths the electron can take overlapped... and when u...
  47. Kaushik

    Reflection of a wave by a rigid boundary

    I found this on the internet. Source How does the crest reach the end of the medium? As the other end is fixed there is no way the crest can reach the interface. Isn't it? My book gave an alternative explanation. It stated that as there is no net displacement at the interface, we can use the...
  48. Kaushik

    B Understanding Laplace's Correction and the Adiabatic Process

    Laplace pointed out that the variation in pressure happens continuously and quickly. As it happens quickly, there is no time for heat exchange. This makes it adiabatic. But Newton believed it to be isothermal. Why isn't it isothermal but adiabatic? Why is there a change in temperature?
  49. jk22

    I Solving the Wave Equation via complex coordinates

    I'm looking for material about the following approach : If one suppose a function over complex numbers ##f(x+iy)## then ##\frac{df}{dz}=\frac{\partial f}{\partial x}\frac{1}{\frac{\partial z}{\partial x}}+\frac{\partial f}{\partial y}\frac{1}{\frac{\partial z}{\partial y}}=\frac{\partial...
  50. E

    Minimum frequency for a point to have maximum amplitude in standing wave

    When I tried using the equations the only thing I could see is that it is impossible for such point to be an anti-node. In this case, how do I find the frequency? The answer is not even with the form of v*n/2L which is very confusing to me, I thought that the frequency of a standing wave must...
Back
Top