MHB 2.3.17 Find the average acceleration for this interval.

AI Thread Summary
The average acceleration of the object between t=5 s and t=8 s is calculated using the formula a_av = (v2 - v1) / (t2 - t1), resulting in -2 m/s². The initial velocity is 5 m/s at t=5 s, and the final velocity is -1 m/s at t=8 s. While the calculation confirms the book's answer of -2 m/s², there is insufficient information to create a detailed graph of acceleration over time. The discussion highlights that only average acceleration can be determined from the given data. Therefore, the focus remains on the average value rather than the specifics of the motion's curve.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
2.3.17 At $t=5\, s$ an object is traveling at $5 \, m/s$.
At $t=8\, s$ its velocity is $-1\, m/s$
(a) Find the average acceleration for this interval.
$$a_{av}=\frac{v_2-v_1}{t_2-t_1}=\frac{\Delta v}{\Delta t}$$
So
$$a_{av}=\frac{-1-5}{8-5}=\frac{-6}{3}=-2 \, m/s$$
book answer $-2\, m/s^2$ok I think this is ok
but again was wondering if a tikx graph can be made or is acceleration a curve?
 
Mathematics news on Phys.org
karush said:
2.3.17 At $t=5\, s$ an object is traveling at $5 \, m/s$.
At $t=8\, s$ its velocity is $-1\, m/s$
(a) Find the average acceleration for this interval.
$$a_{av}=\frac{v_2-v_1}{t_2-t_1}=\frac{\Delta v}{\Delta t}$$
So
$$a_{av}=\frac{-1-5}{8-5}=\frac{-6}{3}=-2 \, m/s$$
book answer $-2\, m/s^2$ok I think this is ok
but again was wondering if a tikx graph can be made or is acceleration a curve?
You don't have enough information to draw the actual curve. Just enough to get the average.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top