I Affine parameter and non-geodesic null curves

JimWhoKnew
Messages
224
Reaction score
121
TL;DR Summary
Is there a sensible way to define an affine parameter for non-geodesic null curves?
Consider the curve (thanks to SE) in flat spacetime, given in Cartesian coordinates by$$x^μ(λ)=\left(λ , R\cos\frac{\lambda⁡}{R} , R\sin\frac{\lambda}{⁡R} ,0\right)$$where ##~R~## is a positive constant. At each point$$\dot x^\mu \dot x_\mu=0$$so it is a null curve but not a geodesic (not a straight line). It also satisfies$$\ddot x^\mu \dot x_\mu=0 \quad .$$If I got the calculation right, it turns out that for any reparametrization ##~\lambda'~## , where ##~\lambda'(\lambda)~## is an arbitrary monotonic function, ##~\dot x^\mu \dot x_\mu=\ddot x^\mu \dot x_\mu=0~## holds in this particular case (dots here w.r.t. ##~\lambda'~##).

Is there a sensible way in which we can define an affine parameter for non-geodesic null curves like this, such that certain parametrizations are affine while others are not?

Edit: (We have criteria for parameters to "be affine" in the cases of timelike/spacelike curves and null geodesics. Is the non-geodesic null curve an exception?)
 
Last edited:
Physics news on Phys.org
For the particular example in OP, I think that the time coordinate ##~t~## of the specific reference frame can be regarded as an affine parameter. Because of the symmetry (the Euclidean length traced in each uniform interval ##~\Delta t~## is the same).
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Replies
10
Views
2K
Replies
28
Views
3K
Replies
8
Views
1K
Replies
10
Views
5K
Replies
16
Views
9K
Back
Top