- #1
Andrew Tom
- 14
- 0
- Homework Statement
- Air wedge
- Relevant Equations
- ##2t = n\lambda## and ##2t=(n+\frac{1}{2})\lambda##
My textbook derives the condition for bright and dark fringes on an air wedge by assuming that the reflected and refracted rays have a path difference of pi. Hence the conditions for bright and dark fringes end up being the opposite of what is expected.
However I did not really understand the derivation. The book says that the first ray will reflect from the BOTTOM of the top glass slide. So it is essentially reflected from glass, off air, hence there is no phase change. But I didn't understand why the book assumes the first ray is only reflected from the BOTTOM of the top glass slide. Isn't it also reflected from the top of the slide? This would mean it is reflected from air, off glass, hence it DOES undergo phase change of pi.
The second ray is refracted. It is then reflected from top of bottom glass slide. So it is reflected from air, off glass, hence it undergoes a phase change. Again, I am slightly confused why we can ignore the reflections of this second ray from the bottom of the bottom glass slide, and also its reflection from the bottom of the top glass slide, etc.
However I did not really understand the derivation. The book says that the first ray will reflect from the BOTTOM of the top glass slide. So it is essentially reflected from glass, off air, hence there is no phase change. But I didn't understand why the book assumes the first ray is only reflected from the BOTTOM of the top glass slide. Isn't it also reflected from the top of the slide? This would mean it is reflected from air, off glass, hence it DOES undergo phase change of pi.
The second ray is refracted. It is then reflected from top of bottom glass slide. So it is reflected from air, off glass, hence it undergoes a phase change. Again, I am slightly confused why we can ignore the reflections of this second ray from the bottom of the bottom glass slide, and also its reflection from the bottom of the top glass slide, etc.