Amplitude of harmonic oscillation given position and velocity

  • #1
zenterix
693
83
Homework Statement
A particle performs harmonic oscillations along the ##x##-axis about the equilibrium position ##x=0##. The oscillation frequency is ##\omega=4\text{s}^{-1}##.

At a certain moment of time the particle has a coordinate ##x_0=25\text{cm}## and its velocity is equal to ##v_{x0}=100\text{cm/s}##.

Find the coordinate ##x## and the velocity ##v_x## of the particle ##t=2.40\text{s}## after that moment.
Relevant Equations
##x(t)=a\cos{(\omega t-\phi)}##
##v(t)=-a\omega\sin{(\omega t-\phi)}##

##x(0)=a\cos{(-\phi)}=x_0##

##v(0)=-a\omega\sin{(-\phi)}=v_0##

##\implies \tan{(-\phi)}=-\frac{v_0}{\omega x_0}##

##\implies \phi=-\tan{\left (-\frac{v_0}{\omega x_0}\right )}##

The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##

How do we find this expression?

For the given values of ##\omega, x_0##, and ##v_{x0}## we have ##\phi=-\frac{\pi}{4}## and so we can find that

##\phi=-\frac{\pi}{4}##

##x(0)=a\frac{\sqrt{2}}{2}=x_0##

##a=\frac{2x_0}{\sqrt{2}}##
 
Physics news on Phys.org
  • #2
The answer seems to be that we multiply the equation for ##x(0)## by ##\omega##, square it, add it to the square of the ##v(0)## equation, and solve for ##a##.

I wonder if there is a simpler way that comes about through intuition about the meaning of the equations. At least for me this was just an algebraic trick.
 
  • #3
From your expression for ##x(0)##, $$a^2=\frac {x_0^2} {cos^2(-\phi)}$$
From trig, $$cos^2(\alpha)=\frac 1 {1+tan^2(\alpha)}$$
Then, algebra...
 
Last edited:
  • #4
zenterix said:
The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##

How do we find this expression?
It’s conventional to use upper case ##A## for amplitude. (Lower case ##a## is acceleration.) So another way to get the above formula is:

##x(t) = A \cos(\omega t - \phi)##
##v(t) = -A\omega \sin(\omega t - \phi)##
Use ##\cos^2 + \sin^2 = 1## and this will give the formula relating ##A, \omega, x## and ##v##.

If you’re allowed to use it directly, there is a handy 'standard' SHM formula for velocity as a function of displacement: ##v = \pm \omega \sqrt{A^2 -x^2}##. This can easily be rearranged to give the formula for ##A##.
 
  • Like
Likes SammyS and PeroK
  • #5
If I was looking at this problem for the first time, I would do this.

Take ##t = 0## when the object is at the origin. Then, the equation of motion is:
$$x = A\sin(\omega t)$$That must be easier than messing about with a phase factor. Then, of course:$$v = \omega A\cos(\omega t)$$You are given ##\omega## and ##x_0, v_0## at some unknown time ##t_0##. That's two equations in two unknowns. Solve for ##t_0## and ##A##, then plug in ##t_0 + 2.4s##.

Even if that's not the neatest or quickest way, it's the sort of thing you should be able to do by now.

PS as a byproduct, you get the expression for ##A## when you eliminate ##t_0##.
 
Last edited:
  • Like
Likes SammyS

FAQ: Amplitude of harmonic oscillation given position and velocity

What is the amplitude of a harmonic oscillator?

The amplitude of a harmonic oscillator is the maximum displacement from its equilibrium position. It represents the peak value of the oscillatory motion.

How can you determine the amplitude from position and velocity?

The amplitude can be determined using the formula \( A = \sqrt{x^2 + \left(\frac{v}{\omega}\right)^2} \), where \( x \) is the position, \( v \) is the velocity, and \( \omega \) is the angular frequency of the oscillator.

What is the role of angular frequency in finding the amplitude?

Angular frequency (\( \omega \)) is crucial because it relates the velocity to the position in harmonic motion. It ensures the correct phase relationship between position and velocity, allowing for accurate calculation of the amplitude.

Can the amplitude be negative?

No, the amplitude cannot be negative. It is always a positive value representing the maximum extent of oscillation from the equilibrium position.

What units are used for amplitude in harmonic oscillation?

The units of amplitude are the same as those of displacement, typically meters (m) in the International System of Units (SI), but it can also be in centimeters (cm) or other units of length depending on the context.

Back
Top