- #1
zenterix
- 693
- 83
- Homework Statement
- A particle performs harmonic oscillations along the ##x##-axis about the equilibrium position ##x=0##. The oscillation frequency is ##\omega=4\text{s}^{-1}##.
At a certain moment of time the particle has a coordinate ##x_0=25\text{cm}## and its velocity is equal to ##v_{x0}=100\text{cm/s}##.
Find the coordinate ##x## and the velocity ##v_x## of the particle ##t=2.40\text{s}## after that moment.
- Relevant Equations
- ##x(t)=a\cos{(\omega t-\phi)}##
##v(t)=-a\omega\sin{(\omega t-\phi)}##
##x(0)=a\cos{(-\phi)}=x_0##
##v(0)=-a\omega\sin{(-\phi)}=v_0##
##\implies \tan{(-\phi)}=-\frac{v_0}{\omega x_0}##
##\implies \phi=-\tan{\left (-\frac{v_0}{\omega x_0}\right )}##
The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##
How do we find this expression?
For the given values of ##\omega, x_0##, and ##v_{x0}## we have ##\phi=-\frac{\pi}{4}## and so we can find that
##\phi=-\frac{\pi}{4}##
##x(0)=a\frac{\sqrt{2}}{2}=x_0##
##a=\frac{2x_0}{\sqrt{2}}##
##x(0)=a\cos{(-\phi)}=x_0##
##v(0)=-a\omega\sin{(-\phi)}=v_0##
##\implies \tan{(-\phi)}=-\frac{v_0}{\omega x_0}##
##\implies \phi=-\tan{\left (-\frac{v_0}{\omega x_0}\right )}##
The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##
How do we find this expression?
For the given values of ##\omega, x_0##, and ##v_{x0}## we have ##\phi=-\frac{\pi}{4}## and so we can find that
##\phi=-\frac{\pi}{4}##
##x(0)=a\frac{\sqrt{2}}{2}=x_0##
##a=\frac{2x_0}{\sqrt{2}}##