Angle that makes kinetic and potential energy of simple pendulum equal

AI Thread Summary
The discussion centers on the relationship between kinetic and potential energy in a simple pendulum, exploring methods to derive equations for speed and angle. Initial attempts involved conservation of energy to relate speed and angle, leading to a derived equation for speed, but the author struggled with the concept of maximum speed. A later realization connected potential energy to kinetic energy, simplifying the problem to a straightforward equation. The conversation highlights that both energy types depend on chosen reference points, and the derived equations ultimately yield consistent results despite initial confusion. The conclusion emphasizes the importance of correctly applying energy conservation principles in pendulum motion analysis.
DrBanana
Messages
54
Reaction score
4
Homework Statement
The max speed and the length of the string of a pendulum is given. At what angle (with regard to the vertical y axis) is the kinetic energy and potential energy the same? Assume the maximum angle displacement is small, so that the pendulum udergoes simple harmonic motion.
Relevant Equations
##E_{total}=0.5mv_{max}^2##
pendulumquestion.png


On the first attempt I used conservation of energy to get it down to a single equation involving theta and v (the speed when the angle is theta). But I had no idea how to find v.

Now since the maximum speed is given, it is possible to find the maximum angular displacement, ##\alpha##. Then, using conservation of energy, it is possible to show that ##v^2=2gL(cos\theta - cos\alpha)##. Then came my hail mary attempt, so to speak.
I don;t know if this is legal for a single particle, but I wrote ##\frac{1}{2}I \omega^2 = \int_{0}^{\beta}\tau d \beta##, where ##\tau=-Lmgsin\theta## and after solving the integral I use ##\beta=\alpha=\theta##. Of course, ##I=mL^2##. Using the fact that tangential speed=L*angular speed, it is possible to get another equation for v using this integral. Then equating the two v's: ##cos\theta-cos\alpha=1-cos(\alpha-\theta)##.
An observation is, I didn't actually use the fact that this is simple harmonic motion.
Is this way ok?

Now, I found a solution elsewhere. Though I do not understand it, it eerily yields a similar result:
##v_{max}^2=2gx##, x is the distance such that ##OBcos\theta+x=OA## (look at the figure). How it's assumed that the particle undergoes constant acceleration, I'm not sure. Using this equation, theta is calculated. At first this was the wrong approach, but the answer is the same as the one I get. Of course there is a possibility both methods are wrong.

Edit: It just occurred to me neither approach makes use of the fact that the two energies are equal. So how'd I still get an angle?

I can't believe I didn't get this before, but it should be as simple as this:
##2PE=E_{total}##
##2mgL(1-cos\theta)=mgL(1-cos\alpha)##
##\theta=9.166^{\circle}##

Still I would like to know what happened in my first attempt.
 
Last edited:
Physics news on Phys.org
The snarky answer is: "Every angle that the pendulum achieves".

Potential energy depends on an arbitrarily chosen reference. Choose the right reference and potential energy is equal to kinetic energy.

For that matter, kinetic energy also depends on an arbitrarily chosen reference frame. Choose the right reference frame and kinetic energy can take on any arbitrarily chosen [non-negative] value.
 
Last edited:
DrBanana said:
Now, I found a solution elsewhere. Though I do not understand it, it eerily yields a similar result:
##v_{max}^2=2gx##, x is the distance such that ##OBcos\theta+x=OA## (look at the figure). How it's assumed that the particle undergoes constant acceleration, I'm not sure. Using this equation, theta is calculated. At first this was the wrong approach, but the answer is the same as the one I get. Of course there is a possibility both methods are wrong.
This is not a solution to the same problem. Distance ##x## is the vertical distance from the lowest point of the motion when the pendulum is at angle ##\theta## and at rest. Note that ##v_{max}^2=2gx## does not necessarily imply constant acceleration. It is a mechanical energy conservation equation because only gravity does work on the mass, so it's as if the mass were in free fall over height ##x##. If you write ##KE+PE## at height of release (##KE=0##) and at the lowest point (##PE=0##), $$0+mgx=\frac{1}{2}mv_{max}^2\implies v_{max}^2=2gx.$$The equation that you found relates the maximum speed to the angle of release from rest.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top