AP physics 2: Phase change in thin film interference

  • Thread starter Thread starter AAONA
  • Start date Start date
Click For Summary
When light reflects off a boundary from a medium of lower refractive index to a higher one, a 180° phase change occurs. In this scenario, light travels from air to the first layer (n₁ = 1.404) and then reflects off the glass (n_glass = 1.62). The reflection at the glass interface results in a 180° phase change, while the transition from air to the first layer does not induce a phase change. Therefore, the total phase change for light reflecting from the glass is 180°. The confusion arises from not accounting for the direction of light travel and the phase changes at each interface correctly.
AAONA
Messages
1
Reaction score
0
Homework Statement
Phase change in thin film interference
Relevant Equations
2t=. 5m/wavelength

180° phase change if n2>n1
47. Two thin layers of material with different indices of refraction are coated on a glass plate. The outer first material has n₁ = 1.404, the inner second material has n₂ = 1.531, and the glass has glass = 1.62. If light is incident from air on the first layer, what is the phase change for light that reflects from the glass?

a. 0°

b. 180°

c. 360°

d. 540°

Apparently the answer is 180, but I don't get it. I assumed since it's low n» high» higher > two consecutive 180° phase changes since moving to a denser meduim produces a 180° phase change, so 360° which is equivalent to zero.


What am I missing?
 
Physics news on Phys.org
The questions asks about the light reflected from the glass, so must traverse the layers in the opposite direction as well.
 
  • Like
Likes AAONA, SammyS and berkeman
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
7
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K