- #421
JesseM
Science Advisor
- 8,520
- 16
Yes.neopolitan said:It seems to me that we have two stopping points here.
First, the need to prove that there must be one single factor (as in my derivation shown earlier), rather than possibly two factors.
How is that different from the above? I'm just asking for a demonstration that the specific properties of the events you chose ensure that the factor will be the same in both equations, and pointing out that since you presumably agree the factor wouldn't be the same for an arbitrary pair of events, then your demonstration will have to somehow make use of those specific properties rather than just making use of more general facts like the first postulate of SR.neopolitan said:Second, generality, in that you think that if I chose two totally arbitrary events in order to to measure the interval between them in two frames, and that you feel that there is a "need for an explanation as to what specific property of the two events (I) chose ensures that the constants in those two equations will be the same".
I would say any totally airtight argument for why they must be the same would constitute a "proof", so I don't really understand this distinction. Unless by "default" you just mean "the assumption that seems most plausible a priori even if we aren't sure it's actually correct", in which case I don't think that would negate the need for a proof.neopolitan said:Do you further agree that, if I were to convince you that there being one single factor is the default, that feat would negate the need for a proof?
Keep in mind, also, my later criticisms involving the final equations you derived, which I say have a physical meaning that's totally unlike the Lorentz transformation equations...it seems in a way a bit pointless to spend a lot of time thinking about how to justify this one step in your demonstration (which I agree happens to be true even if we haven't found a way to justify it) if the final endpoint of your demonstration is just an equation that looks superficially like the Lorentz transformation but really has almost nothing to do with it, and has no real utility outside of relating quantities in the specific physical scenario you describe where a light ray crosses path with two observers (so it cannot even really be understood as a special case of the Lorentz transformation, since the variables that appear in the equations aren't all defined in terms of the same single event or pair of events)