Bus and Sports Car Kinematics Problem

  • Thread starter Thread starter lovemake1
  • Start date Start date
  • Tags Tags
    Bus Kinematics
AI Thread Summary
A bus traveling at 15.0 m/s east begins to decelerate at 0.5 m/s² west, while a sports car starts at 6 m/s east with an acceleration of 2.5 m/s² east. The problem involves setting up equations for the distance traveled by both vehicles over time. The key is to equate the two distance equations, as they will be equal when the sports car catches up to the bus. The solution indicates that the sports car will catch the bus in 6 seconds.
lovemake1
Messages
147
Reaction score
1

Homework Statement


Question reads: A bus traveling at 15.0m/s [E], started to slow down with an acceleration of 0.5m/s^2[W] as soon as it was abreast of a sports car. At the same instant, the sports car had a velocity of 6m/s [E] and was accelerating at 2.5m/s^2 [E]. At what time does the sports car catch up to the bus?

Homework Equations


vf^2 = vi^2 + 2ad
d = Vit + 1/2at^2


The Attempt at a Solution



d = 15t + 1/2(-0.5)t^2 <-- bus
d = 6t + 1/2(2.5)t^2 <-- car

these are the two equations that i have and will i use these two equations to solve for time ? or distance?

im very confused at this point. ( putting two different object's speed together)

please help me further guide me with this problem.
 
Physics news on Phys.org


Hi ya,

The equation you have used is correct - remember, that if the car has caught up with the bus, then d will be the same for both. Hope this helps :)
 


The question sounds so confusing to me :S If the bus and the car are abreast, then the car has already caught up with the bus..

Anyway, usually for this kind of thing, you have 2 equations, use the variable that is in common with both of them, equate them to each other and solve
 


d = 15t + 1/2(-0.5)t^2 <<--- for the bus

d = 6t + 1/2(2.5)t^2 <<-- for the sport car.


Solve the simultaneous equation and you had it.

I hope I'm right @_@.

My answer is 6seconds.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top