Calculating Angle & Speed to Reach Planet's Moon from Station Orbit

AI Thread Summary
To calculate the angle and speed required for a station in orbit to reach a planet's moon, one must consider the principles of tangential velocity and conservation of energy. An increase in velocity at a specific point in the orbit will alter the orbit's height, potentially transitioning it to an elliptical path. Clarification is needed on the term "opposite orbit," which may refer to the resulting trajectory after an impulse is applied. The problem also requires knowledge of the initial angular separation between the station and the moon, as this affects the timing and effectiveness of the impulse. Ultimately, the solution hinges on applying orbital mechanics principles to determine the optimal angle and velocity for the maneuver.
dirb
Messages
3
Reaction score
0
Homework Statement
Find angle and velocity
Relevant Equations
Unsure
A station is orbiting a planet at a distance R1, a moon is orbiting the planet at distance R2 with the period T. The planet itself has a radius rp and a mass mp. We know that when an object adds its velocity at a point in the orbit, the height of the opposite orbit will increase. Determine the angle $\theta$ and additional speed so that the station reaches the moon of the planet.

I was thinking that it has something to do with tangential velocity, and conservation of energy but I don't know how to write the maths? Which concepts should I use in this problem? thanks!
 
Physics news on Phys.org
dirb said:
Homework Statement:: Find angle and velocity
Relevant Equations:: Unsure

We know that when an object adds its velocity at a point in the orbit, the height of the opposite orbit will increase.
Unsure what is meant by "when an object adds its velocity". Do you mean "when an impulse is given to an object in orbit so as to increase its speed"?
And what is the "opposite orbit"? Is this a translation?

As to reaching the moon, a one time impulse to an object in a circular orbit will produce an elliptical one. And even if we got the station into the same circular orbit as the moon, it would necessarily be at the same period as the moon, so still might never reach it. I don't see how the question can be answered without knowing the initial angular separation of the bodies.

Edit: assuming the two given radii are different, the periods are different. Maybe we are to assume the impulse is given at the ideal point (the one requiring the least impulse) in their relative motions.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top