I Calculating Covariant Derivative of Riemann Tensor in Riemann Normal Coordinates

minits
Messages
12
Reaction score
0
TL;DR Summary
Covariant derivative of the Riemann tensor evaluated in Riemann normal coordinates
Hello everyone,

in equation 3.86 of this online version of Carroll´s lecture notes on general relativity (https://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll3.html) the covariant derviative of the Riemann tensor is simply given by the partial derivative, the terms carrying the Christoffel symbols seem to vanish. I assume this results from the note that it is evaluated in Riemann normal coordinates. I know one can choose the coordinate system so that a given Christoffel-symbol vanishes but in this case there are so many to handle so that I am not convinced this is working. Can someone please give me an input on how to make myself clear that it works? Thanks in advance!
 
Physics news on Phys.org
Can you be more specific. What doesn't seem to work? It looks perfectly fine.
 
minits said:
Summary:: Covariant derivative of the Riemann tensor evaluated in Riemann normal coordinates

Hello everyone,

in equation 3.86 of this online version of Carroll´s lecture notes on general relativity (https://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll3.html) the covariant derviative of the Riemann tensor is simply given by the partial derivative, the terms carrying the Christoffel symbols seem to vanish. I assume this results from the note that it is evaluated in Riemann normal coordinates. I know one can choose the coordinate system so that a given Christoffel-symbol vanishes but in this case there are so many to handle so that I am not convinced this is working. Can someone please give me an input on how to make myself clear that it works? Thanks in advance!
Riemann normal coordinates are, by definition, coordinates in which at a specific point ##x_0## the metric is minkowskian and (all) the Christoffel symbols vanish.
Therefore covariant derivatives evaluated at this point ##x_0## are just ordinary derivatives.
 
Thanks for your answer! I thought in this case the Riemann tensor should vanish as well due to it´s definition in form of products and derivatives of Christoffel symbols but one will probably simply use the argument that tensors are independent of any basis.
 
minits said:
I thought in this case the Riemann tensor should vanish as well due to it´s definition in form of products and derivatives of Christoffel symbols
The Christoffel symbols vanish at the origin of Riemann normal coordinates, but their derivatives do not vanish at that point. So the Riemann tensor, since it includes derivatives of the Christoffel symbols, does not vanish at that point.
 
  • Like
Likes JD_PM and Orodruin
Ah ok thanks for your answer!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Back
Top