- #141
- 5,709
- 2,979
The formula is correct in posts 122 and 123. ## H =q_m/(4 \pi \mu_o r^2) ## and flux ## \phi= \mu_o H r^2 \Omega ## where ## \Omega=2 \pi (1-\frac{z}{\sqrt{z^2+R^2}} ) ## is the solid angle. Here a section of a sphere (with boundary being the coil, and center at ## q_m ##) is used to compute the flux, rather than the flat surface of the plane of the coil.
To compute the solid angle, ## \Omega=2 \pi \int\limits_{0}^{\theta_o} \sin{\theta} \, d \theta ##, where ## \cos{\theta_o}=\frac{z}{\sqrt{z^2+R^2}} ##.
To compute the solid angle, ## \Omega=2 \pi \int\limits_{0}^{\theta_o} \sin{\theta} \, d \theta ##, where ## \cos{\theta_o}=\frac{z}{\sqrt{z^2+R^2}} ##.