- #71
Hlud
- 72
- 6
dkotschessaa said:I think we all agree that there is definitely a place for easier (non calculus based) or conceptual (non math based) physics... It's fascinating, intellectually stimulating, and it can potentially inspire someone to go further. The problem of course is mistaking this for any kind of deep understanding.
I think this is the problem. You say that conceptual physics is non-math based. There are physics concepts that include math. Trying to go a little back to the original topic, i remember taking a test in a Relativity class (undergraduate level). There was like three problems, and all of them required me to derive equations previously derived in class. None of the problems really cared if i knew what the equation meant. Most of my physics classes were like this (and looking at problems in textbooks, leads me to believe that most classes around the world are like this).
Now, there was definitely an implied understanding. (And i was working at nights through college). Nevertheless, i think that a purely quantitative understanding is just as good as a purely quantitative understanding of modern physics, or any part of physics. Physics is the marriage of the two. A conceptual physics course, in my opinion, would reflect this, and be offered at any level of physics. I don't know how this would look for modern physics (because i don't think i learned much in my modern physics courses), but i am trying to develop true conceptual physics courses for my regular and AP classes.