- #1
AN630078
- 242
- 25
- Homework Statement
- Hello, I have been teaching myself about capacitors recently and although I feel I have understood the fundamental principles and equations I am still a little uncertain of pertinent information and the functioning of capacitor circuits. I have been attempting to improve my understanding through some relatively straight-forward questions but I still have a few questions here which have confronted with material I have not learnt about. I have attached a couple of such questions below which I would really appreciate if anyone could explain in further detail and overlook my workings
Question 1: A 22 μF capacitor is charged using a 12 V battery.
a. Find the charge is stored on the capacitor?
b. Calculate how much energy is stored on the capacitor?
c. How much electrical energy has the battery provided?
d. Comment upon the difference between your previous two answers and explain why this occurs?
Question 2:
Two capacitors, of capacitance 22μF and 11μF respectively, are connected in series to a 12 V battery. What is the charge stored on each capacitor and the PD across each capacitor? If the combination is then discharged through a resistor, what total charge flows through the resistor?
- Relevant Equations
- C=Q/V
E=1/2CV^2
Question 1:
a. I am aware that the general equation for capacitance is C=Q/V thus Q=CV.
22 μF = 0.000022 or 2.2*10^-5 F
Would the charge stored by equal to Q=2.2*10^-5*12
Thus, Q=2.64*10^-4 C
b. The energy stored by a capacitor is given by E=1/2QV=1/2CV^2=1/2Q^2/C
I think with the information provided it would be most appropriate to use E=1/2QV^2 here.
Hence, E=1/2*2.2*10^-5*12^2
E=1.584*10^-3 J
c. I do not know how to find the electrical energy provided by the battery, although I assume this is rather a simple question. I have just not read anything regarding this specific line of inquiry therefore I am at a brick wall in terms of finding a solution.
d. Again, I am uncertain. Would this difference be on account of half of the energy being supplied by the battery being lost to heat in the circuit? I do not really know why the energy provided by the battery and the energy stored by the capacitor are different. Since the capacitor begins with zero stored energy but as the current flows, the capacitor charges requiring greater increases in the voltage input until it is fully charged. At this point there would not be a voltage difference yet the accelerated charges are still moving. Therefore, would half of the energy go into the capacitor and half go into the current in the wire. The current will continue to flow, charging the capacitor until the current stops. So would half of the energy supplied be dissipated in the resistance in the circuit?
Question 2;
22μF=2.2*10^-5 F
11μF=1.1*10^-5 F
To find the charge stored on each capacitor I believe that one must first find the equivalent total capacitance of the circuit, since the charge would be the same on both capacitors. Since the capacitors are said to be in series the total capacitance would be equal to 1/CT=1/C1+1/C2+...1/Cn
Thus, 1/CT=1/22+1/11=3/22
CT=22/3=7.3333...μF or 7.3 *10^-6 F
Then, Q=CV
Q=7.3 *10^-6*12
Q=8.796*10^-5 C ~ 8.8*10^-5 C
To find the p.d. across the first 22μF capacitor
V=Q/C
V1= 8.8*10^-5/2.2*10^-5
V1=3.9981 ~4.00 V
To find the p.d. across the second 11μF capacitor
V=Q/C
V1= 8.8*10^-5/1.1*10^-5
V1=7.9963 ~8.00 V
I am not certain how to find the charge flowing through the resistor, would this be using the discharging charge equation Q=Q0e^-t/RC?
But how would I calculate this without knowing the resistance or the time to discharge? I am sorry I am having great difficulty here.
a. I am aware that the general equation for capacitance is C=Q/V thus Q=CV.
22 μF = 0.000022 or 2.2*10^-5 F
Would the charge stored by equal to Q=2.2*10^-5*12
Thus, Q=2.64*10^-4 C
b. The energy stored by a capacitor is given by E=1/2QV=1/2CV^2=1/2Q^2/C
I think with the information provided it would be most appropriate to use E=1/2QV^2 here.
Hence, E=1/2*2.2*10^-5*12^2
E=1.584*10^-3 J
c. I do not know how to find the electrical energy provided by the battery, although I assume this is rather a simple question. I have just not read anything regarding this specific line of inquiry therefore I am at a brick wall in terms of finding a solution.
d. Again, I am uncertain. Would this difference be on account of half of the energy being supplied by the battery being lost to heat in the circuit? I do not really know why the energy provided by the battery and the energy stored by the capacitor are different. Since the capacitor begins with zero stored energy but as the current flows, the capacitor charges requiring greater increases in the voltage input until it is fully charged. At this point there would not be a voltage difference yet the accelerated charges are still moving. Therefore, would half of the energy go into the capacitor and half go into the current in the wire. The current will continue to flow, charging the capacitor until the current stops. So would half of the energy supplied be dissipated in the resistance in the circuit?
Question 2;
22μF=2.2*10^-5 F
11μF=1.1*10^-5 F
To find the charge stored on each capacitor I believe that one must first find the equivalent total capacitance of the circuit, since the charge would be the same on both capacitors. Since the capacitors are said to be in series the total capacitance would be equal to 1/CT=1/C1+1/C2+...1/Cn
Thus, 1/CT=1/22+1/11=3/22
CT=22/3=7.3333...μF or 7.3 *10^-6 F
Then, Q=CV
Q=7.3 *10^-6*12
Q=8.796*10^-5 C ~ 8.8*10^-5 C
To find the p.d. across the first 22μF capacitor
V=Q/C
V1= 8.8*10^-5/2.2*10^-5
V1=3.9981 ~4.00 V
To find the p.d. across the second 11μF capacitor
V=Q/C
V1= 8.8*10^-5/1.1*10^-5
V1=7.9963 ~8.00 V
I am not certain how to find the charge flowing through the resistor, would this be using the discharging charge equation Q=Q0e^-t/RC?
But how would I calculate this without knowing the resistance or the time to discharge? I am sorry I am having great difficulty here.