- #1
etotheipi
Homework Statement:: i) If ##\bar{g} = \Omega^2 g## for some positive function ##\Omega##, show that ##\bar{g}## and ##g## have the same null geodesics.
ii) Let ##\psi## solve ##g^{ab} \nabla_a \nabla_b \psi + \xi R \psi = 0##. Determine ##\xi## such that ##\bar{\psi} = \Omega^p \psi## for some ##p## solves the equation in a spacetime with metric ##\bar{g} = \Omega^2 g## if ##\psi## solves the equation in a spacetime with metric ##g##.
Relevant Equations:: N/A
A conformal transformation doesn't change the null cones of the metric, so if ##n^a## is a null vector of ##g## then it is also a null vector of ##\bar{g}##. So it's necessary to show that ##n^a \bar{\nabla}_a n^b = 0 \implies n^a \nabla_a n^b = \alpha n^b## where ##\nabla_a## and ##\bar{\nabla}_a## are the covariant derivative operators adapted to ##g## and ##\bar{g}## respectively. We have\begin{align*}
\bar{\Gamma}^i_{kl} &= \frac{1}{2} \bar{g}^{im} (\partial_l \bar{g}_{mk} + \partial_k \bar{g}_{ml} - \partial_m \bar{g}_{kl}) \\
&= \frac{1}{2} \Omega^{-2} g^{im}(\Omega^2 \left[ \partial_l g_{mk} + \partial_k g_{ml} - \partial_m g_{kl}\right] + 2\Omega [g_{mk} \partial_l \Omega + g_{ml} \partial_k \Omega - g_{kl} \partial_m \Omega]) \\
&= \Gamma^{i}_{kl} + \Omega^{-1} (\delta^i_k \partial_l \Omega + \delta^i_l \partial_k \Omega - g^{im} g_{kl} \partial_m \Omega)
\end{align*}It follows that\begin{align*}
n^a \bar{\nabla}_a n^b &= n^a (\partial_a n^b + \bar{\Gamma}^b_{ac} n^c) \\
&= n^a\left( \partial_a n^b + \Gamma^b_{ac} n^c \right) + n^a n^c \Omega^{-1} \left( \delta^b_a \partial_c \Omega + \delta^b_c \partial_a \Omega - g^{bm}g_{ac} \partial_m \Omega \right) \\
&= n^a \nabla_a n^b + n^a n^c \Omega^{-1} \left( 2 \delta^b_a \partial_c \Omega - g^{bm}g_{ac} \partial_m \Omega \right)
\end{align*}I can't see how to tidy up the right hand side; a hint would be appreciated. Thanks!
ii) Let ##\psi## solve ##g^{ab} \nabla_a \nabla_b \psi + \xi R \psi = 0##. Determine ##\xi## such that ##\bar{\psi} = \Omega^p \psi## for some ##p## solves the equation in a spacetime with metric ##\bar{g} = \Omega^2 g## if ##\psi## solves the equation in a spacetime with metric ##g##.
Relevant Equations:: N/A
A conformal transformation doesn't change the null cones of the metric, so if ##n^a## is a null vector of ##g## then it is also a null vector of ##\bar{g}##. So it's necessary to show that ##n^a \bar{\nabla}_a n^b = 0 \implies n^a \nabla_a n^b = \alpha n^b## where ##\nabla_a## and ##\bar{\nabla}_a## are the covariant derivative operators adapted to ##g## and ##\bar{g}## respectively. We have\begin{align*}
\bar{\Gamma}^i_{kl} &= \frac{1}{2} \bar{g}^{im} (\partial_l \bar{g}_{mk} + \partial_k \bar{g}_{ml} - \partial_m \bar{g}_{kl}) \\
&= \frac{1}{2} \Omega^{-2} g^{im}(\Omega^2 \left[ \partial_l g_{mk} + \partial_k g_{ml} - \partial_m g_{kl}\right] + 2\Omega [g_{mk} \partial_l \Omega + g_{ml} \partial_k \Omega - g_{kl} \partial_m \Omega]) \\
&= \Gamma^{i}_{kl} + \Omega^{-1} (\delta^i_k \partial_l \Omega + \delta^i_l \partial_k \Omega - g^{im} g_{kl} \partial_m \Omega)
\end{align*}It follows that\begin{align*}
n^a \bar{\nabla}_a n^b &= n^a (\partial_a n^b + \bar{\Gamma}^b_{ac} n^c) \\
&= n^a\left( \partial_a n^b + \Gamma^b_{ac} n^c \right) + n^a n^c \Omega^{-1} \left( \delta^b_a \partial_c \Omega + \delta^b_c \partial_a \Omega - g^{bm}g_{ac} \partial_m \Omega \right) \\
&= n^a \nabla_a n^b + n^a n^c \Omega^{-1} \left( 2 \delta^b_a \partial_c \Omega - g^{bm}g_{ac} \partial_m \Omega \right)
\end{align*}I can't see how to tidy up the right hand side; a hint would be appreciated. Thanks!