Constant acceleration in a rocket

AI Thread Summary
The discussion focuses on analyzing constant acceleration in a rocket using tensor formalism and Lorentz transformations. The author derives the four-vector acceleration in the rocket's frame and translates it to the Earth's frame, ultimately expressing velocity and position as functions of time. It is noted that as time approaches infinity, the rocket's speed approaches the speed of light, but it does not imply that the rocket actually reaches this speed. The conversation also touches on the implications of this acceleration on communication between the Earth and the rocket, emphasizing that after a certain time, signals from Earth cannot reach the rocket. The analysis concludes with a graphical representation of the rocket's trajectory, illustrating that it never intersects with the path of light signals.
Frostman
Messages
114
Reaction score
17
Homework Statement
A rocket, starting from the earth, moves away from it subjected to ##a## constant acceleration in the reference system of instantaneous rest of the rocket itself.
a) Obtain the law of motion, that is the dependence of the distance of the rocket from the earth, as a function of the earth's time ##t##.
b) Show that there is a maximum time ##T## after departure, after which it is impossible to send messages capable of reaching the rocket from the ground. Calculate the dependence of ##T## on ##a##
Relevant Equations
Tensor formalism
I thought I'd start by writing the problem in a tensor formalism. I have identified with ##S## the Earth and ##S'## the rocket. Since the acceleration provided is in the rocket's frame of reference, I can write the following four-vector.
$$
a'^\mu=(0, a, 0, 0)
$$
Since we are interested in the equation of motion in the frame of the earth, I go directly to the frame of reference ##S##. Applying the Lorentz transformations.
$$a^0 = \gamma(a'^0+va'^1)=\gamma v a$$$$a^1 = \gamma(a'^1+va'^0)=\gamma a$$
But I get the four-vector acceleration starting from the derivative of the four-vector velocity with respect to proper time.
$$a^\mu = \frac{d}{d\tau}(\gamma, \gamma v_x, \gamma v_y, \gamma v_z)=(\gamma \frac{d(\gamma)}{dt},\gamma \frac{d(\gamma v_x)}{dt},\gamma \frac{d(\gamma v_y)}{dt},\gamma \frac{d(\gamma v_z)}{dt})$$
In particular
$$a^0 =\gamma v a=\gamma \frac{d(\gamma)}{dt}$$$$a^1=\gamma a = \gamma \frac{d(\gamma v_x)}{dt}$$
Considering the second result:
$$\int_0^v d(\gamma v) = a\int_0^t dt$$
So we have:
$$ \frac{v}{\sqrt{1-v^2}}=at$$$$v(t)=\frac{at}{\sqrt{1+a^2t^2}}$$
By integrating speed over time we have:
$$x(t)=\frac 1a \bigg(\sqrt{1+a^2t^2}-1\bigg)$$
Can it be exhaustive?
The interesting thing is that for big times (##t\rightarrow +\infty##), the speed tends to ##1##. So it comes back to me as a result.
For the second point how could I operate? From this time ##T##, since no luminous message sent from Earth will never be able to reach the rocket, it means that the rocket is also traveling at speed ##1##. I would conclude that this time ##T## is for ##T\rightarrow +\infty##. But it seems trivial and stupid (because I have no dependence from ##a##), in what terms should I reason?
 
Physics news on Phys.org
Frostman said:
For the second point how could I operate? From this time ##T##, since no luminous message sent from Earth will never be able to reach the rocket, it means that the rocket is also traveling at speed ##1##.
It doesn't imply that the rocket is ever traveling at the speed of light.
 
PeroK said:
It doesn't imply that the rocket is ever traveling at the speed of light.
Okay, taking a step back, there is a time, after that time the messages sent from the Earth will never reach the rocket.
Can I see it in terms of equations of motion? Since the position occupied by the rocket will be after that time T, always greater than the position occupied by the signal.
 
Try plotting x(t) on a spacetime diagram.
 
Okay, it's an hyperbola.
Furthermore, the more the acceleration value is greater, the more the trend is that of: ##x(t)=|t|## and this one is the trend of the light signal.
The two trends, as I have drawn them, never meet.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top