- #1
mrapple
- 18
- 1
[Mentors’ note: no template as this thread had initially been misplaced in the technical forums and was moved here]
Summary:: Enclosed Cubic foot capsule passing between two bodies of different densities but questioned pressure.
You have a tub of fresh water 32 feet high sharing a wall with a pressurized container of air. The container of pressurized air is the same size as tub of water; the difference being, it's sealed. There is a hole a foot squared 30-31 feet below the surface of the water. There is an enclosed cubic foot shaped capsule of unpressurized air. The capsule is filling the foot squared hole. Half of the capsule is in the water and half is in the container of pressurized air. Disregarding friction, what should the container of air be pressurized to in order for the capsule to not move? How much should the air container be pressurized in order for the capsule to move?
Summary:: Enclosed Cubic foot capsule passing between two bodies of different densities but questioned pressure.
You have a tub of fresh water 32 feet high sharing a wall with a pressurized container of air. The container of pressurized air is the same size as tub of water; the difference being, it's sealed. There is a hole a foot squared 30-31 feet below the surface of the water. There is an enclosed cubic foot shaped capsule of unpressurized air. The capsule is filling the foot squared hole. Half of the capsule is in the water and half is in the container of pressurized air. Disregarding friction, what should the container of air be pressurized to in order for the capsule to not move? How much should the air container be pressurized in order for the capsule to move?
Last edited by a moderator: