A Differences between Actions in Curved Spacetime

  • A
  • Thread starter Thread starter Haorong Wu
  • Start date Start date
  • Tags Tags
    Spacetime
Haorong Wu
Messages
417
Reaction score
90
TL;DR Summary
I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
First, in Anastopoulos C, Hu B L. A master equation for gravitational decoherence: probing the textures of spacetime[J]. Classical and Quantum Gravity, 2013, 30(16): 165007. , the Einstein-Hilbert action is used to analysis a quantum matter field interacting with the gravitational field, $$S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .$$

Then, in Spacetime and geometry by Sean M. Carroll, section 9.4, the quantum field theory in curved spacetime consider the following Lagrange density $$L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2) .$$

It appears that in the first paper, the curvature scalar ##R## does not couple to the scalar field, while the one in the second case does.

Are the two actions/Lagrangians describe different situations?
 
Physics news on Phys.org
Haorong Wu said:
Summary:: I have found two different actions of scalar field in curved spacetime. I am not sure their differences.
S=\frac 1 \kappa \int d^4 x \sqrt{-g} R + \int d^4 x \sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2) .L=\sqrt {-g} (-\frac 1 2 g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi-\frac 1 2 m^2 \phi^2 -\xi R \phi^2).
In 4 dimensions and for m = 0, the first action is not conformal invariant while the second one is invariant for the specific value \xi = \frac{1}{6}. Also, the case \xi = 0 is called minimally coupled.
Are the two actions/Lagrangians describe different situations?
Yes they are, for you can convince yourself by deriving the equations of motions and the energy-momentum tensors from both actions.
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top