Different forms of Stokes' theorem

  • Thread starter Thread starter MatinSAR
  • Start date Start date
  • Tags Tags
    Vector
AI Thread Summary
The discussion revolves around the application of Stokes' theorem to the vector field defined as ##\vec V=\vec a \phi##. The right-hand side is evaluated as ##\vec a \cdot \oint \phi d \vec \lambda##, while the left-hand side involves the curl of the vector field, leading to the expression ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a##. Initially, it was thought that both terms could be zero, but it was clarified that ##\phi \vec \nabla \times \vec a## is zero due to ##\vec a## being constant, while ##(\vec \nabla \phi) \times \vec a## is not zero and can be rewritten as ##\vec a \times (\vec \nabla \phi)##. The conclusion reached is that the left-hand side equals the right-hand side, confirming the validity of the application of Stokes' theorem in this context.
MatinSAR
Messages
673
Reaction score
204
Homework Statement
Find the different forms using ##\vec V=\vec a \phi## and ##\vec V=\vec a \times \vec P## for constant ##\vec a##.
Relevant Equations
Stokes' theorem.
What am I trying to do for ##\vec V=\vec a \phi## :
##R.H.S= \oint \vec V \cdot d \vec \lambda=\oint \vec a \phi \cdot d \vec \lambda=\vec a \cdot \oint \phi d \vec \lambda ##

##L.H.S= \iint_S \vec \nabla \times \vec V \cdot \vec d \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot \vec d \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot \vec d \sigma= ?##
I think ##\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a## should be 0. why is this wrong?

##\phi \vec \nabla \times \vec a## is 0 because ##\vec a## is a constant vector.
##(\vec \nabla \phi) \times \vec a## is 0 because ##\vec \nabla## acts on both ##\phi## and ##\vec a## so it should be zero.

Edit:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##- \vec a \times (\vec \nabla \phi).##
 
Last edited:
Physics news on Phys.org
MatinSAR said:
Now I think ##(\vec \nabla \phi) \times \vec a## is not 0 because ##\vec \nabla## acts only on ##\phi## so we can rewrite it as ##\vec a \times (\vec \nabla \phi).##
Right.
 
haruspex said:
Right.
Thanks for the reply @haruspex .
##L.H.S= \iint_S \vec \nabla \times \vec V \cdot d \vec \sigma=\iint_S \vec \nabla \times (\vec a \phi) \cdot d \vec \sigma=\iint_S (\phi \vec \nabla \times \vec a + (\vec \nabla \phi) \times \vec a) \cdot d \vec \sigma=##
##- \iint_S \vec a \times (\vec \nabla \phi) \cdot d \vec \sigma=- \iint_S \vec a \cdot (\vec \nabla \phi) \times d \vec \sigma=\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) ##
L.H.S = R.H.S
##\vec a \cdot \iint_S d \vec \sigma \times (\vec \nabla \phi) = \vec a \cdot \oint \phi d \vec \lambda ##
##\iint_S d \vec \sigma \times (\vec \nabla \phi) = \oint \phi d \vec \lambda##

I hope I won't have problem with other part. (##\vec V=\vec a \times \vec P##)
 
I've managed to prove 2nd part using what I've learnt here : https://www.physicsforums.com/threads/vector-operators-grad-div-and-curl.1057533/

But I'm not sure if my proof is mathematically true or it is nonsense. Picture of my work:
2023_12_23 3_15 PM Office Lens.jpg


I would be grateful if someone could point out the problem with my proof.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top