- #1
spaghetti3451
- 1,344
- 34
Let
##0##-form ##f =## function ##f##
##1##-form ##\alpha^{1} =## covariant expression for a vector ##\bf{A}##
Then consider the following dictionary of symbolic identifications of expressions expressed in the language of differential forms on a manifold and expressions expressed in the language of vector calculus in ##\mathbb{R}^{n}##.
##i_{\bf{v}}(\alpha^{1}) \iff \bf{v}\cdot{\bf{A}}##
##df \iff \text{grad}f##
Now, with ##\alpha^{1} = a_{i}dx^{i}##,
why is ##\textbf{d}i_{\bf{v}}(a_{i}dx^{i})\iff\text{grad}({\bf{v\cdot{A}}})\cdot{d\bf{x}}##
and not ##\textbf{d}i_{\bf{v}}(a_{i}dx^{i})\iff\text{grad}({\bf{v\cdot{A}}})##?
##0##-form ##f =## function ##f##
##1##-form ##\alpha^{1} =## covariant expression for a vector ##\bf{A}##
Then consider the following dictionary of symbolic identifications of expressions expressed in the language of differential forms on a manifold and expressions expressed in the language of vector calculus in ##\mathbb{R}^{n}##.
##i_{\bf{v}}(\alpha^{1}) \iff \bf{v}\cdot{\bf{A}}##
##df \iff \text{grad}f##
Now, with ##\alpha^{1} = a_{i}dx^{i}##,
why is ##\textbf{d}i_{\bf{v}}(a_{i}dx^{i})\iff\text{grad}({\bf{v\cdot{A}}})\cdot{d\bf{x}}##
and not ##\textbf{d}i_{\bf{v}}(a_{i}dx^{i})\iff\text{grad}({\bf{v\cdot{A}}})##?
Last edited: