Does the Radius Affect Centripetal Force?

AI Thread Summary
Centripetal force is inversely proportional to the radius, indicating that as the radius increases, the centripetal force decreases, depending on whether linear or angular speed is held constant. The context of the problem is crucial in determining the relationship between radius and centripetal force. A free body diagram can help visualize the forces acting on the object and clarify the equations involved. Understanding these dynamics is essential for accurately analyzing centripetal motion. This discussion emphasizes the importance of context in physics problems related to centripetal force.
mani88
Messages
12
Reaction score
1
Homework Statement
I'm investigating the effect of radius on centripetal force using a conical pendulum. If the length of the string and the mass is kept constant and I increase the orbital radius (assuming force is also kept constant) would the period of the conical pendulum increase or decrease???
Relevant Equations
F=mv^2/r or
F=m4pi^2r/T^2
Well i think centripetal force is inversely proportional to the radius, so I'm guessing it would decrease but not sure to be honest.
 
Physics news on Phys.org
mani88 said:
think centripetal force is inversely proportional to the radius
In general, that depends what is held constant, linear speed or angular speed.
Which of those applies in this context? Or maybe something else?

Draw a free body diagram of the forces on the bob and write the corresponding equations.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top