- #1
ergospherical
- 1,072
- 1,365
Is ##\mathrm{AdS_4}## globally hyperbolic?$$g = -\left(1+ \dfrac{r^2}{l^2} \right)dt^2 + \dfrac{dr^2}{1+ \dfrac{r^2}{l^2}}+ r^2d\Omega^2$$Letting ##r = l \tan \chi## then defining ##\tilde{g} = g \cos^2 \chi##\begin{align*}
g &= \sec^2 \chi (-dt^2 + l^2 d\chi^2) + l^2 \tan^2 \chi d\Omega^2 \\ \\
\tilde{g} &= -dt^2 + l^2 (d\chi^2 + \sin^2 \chi d\Omega^2) \\
\tilde{g} &= -dt^2 + l^2 d\omega^2\end{align*}the topology is ##\mathbb{R} \times S^3##. Does global hyperbolicity of ##\tilde{g}## ##\iff## global hyperbolicity of ##g##?
g &= \sec^2 \chi (-dt^2 + l^2 d\chi^2) + l^2 \tan^2 \chi d\Omega^2 \\ \\
\tilde{g} &= -dt^2 + l^2 (d\chi^2 + \sin^2 \chi d\Omega^2) \\
\tilde{g} &= -dt^2 + l^2 d\omega^2\end{align*}the topology is ##\mathbb{R} \times S^3##. Does global hyperbolicity of ##\tilde{g}## ##\iff## global hyperbolicity of ##g##?
Last edited: