Driving force from buzzer for jacket of length L

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Force Length
AI Thread Summary
The discussion centers on understanding the timing of a buzzer's vibrations in relation to its driving force on a jacket of length L. It highlights the concept of resonance, where the buzzer's vibrations can reinforce the motion of the jacket. Due to energy losses in the swinging cloth, there is a phase lag, meaning the cloth's response is slightly delayed compared to the buzzer's vibrations. This phase lag results in a continuous reinforcement of the driving force. The interaction between the buzzer and the jacket exemplifies the principles of resonance in physical systems.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1675720775912.png

How do we tell when the buzzer vibrates during the cycle to provide the driving force?

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
How do we tell when the buzzer vibrates during the cycle to provide the driving force?
It's an example of resonance. https://en.wikipedia.org/wiki/Resonance.
Because there are losses in the swinging cloth, it will always be a bit behind the source of vibration (phase lag). As a result, the impetus from the source is reinforcing.
 
  • Like
Likes member 731016
haruspex said:
It's an example of resonance. https://en.wikipedia.org/wiki/Resonance.
Because there are losses in the swinging cloth, it will always be a bit behind the source of vibration (phase lag). As a result, the impetus from the source is reinforcing.
Thank you for your reply @haruspex !
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top